

cgJCE
running on Java Systems

User Guide

Version 1.0

06/27/2016

Autor: certgate

cgJCE
running on - certgate

Version 1. 06/27/201 Page i

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

Document History

Version Date Autor Notes

1.0 27.06.2016 certgate -

cgJCE
running on - certgate

Version 1. 06/27/201 Page ii

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

Content

0 About this Guide ... 4

1 Introduction to JCE ... 6

1.1 Provider .. 6

1.2 Service .. 6

1.3 SPI ... 6

2 cgSmartCardProvider .. 8

2.1 SDKs .. 8

2.2 Architecture ... 9

2.3 Concepts ... 12

2.4 SmartCardAuthProvider ... 16

3 Managing Classes .. 22

3.1 ReaderManager ... 22

3.2 ModuleManager / P11ModuleManager .. 23

3.3 SmartCardAuthProviderManager .. 25

4 Differences JCE ... 26

4.1 Objects ... 26

4.2 KeyStore ... 26

4.3 KeyPairGenerator / KeyGenerators ... 27

4.4 Configuration ... 28

5 Loading our JCE ... 30

5.1 Loading our JCE on Windows / Linux – standard Oracle Java .. 30

5.2 Loading our JCE on Android ... 31

6 Examples ... 34

cgJCE
running on - certgate

Version 1. 06/27/201 Page iii

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

List of Figures
Figure 1: abstraction layer / SDKs ... 9
Figure 2: System architecture JCE / JCE SDK ... 10
Figure 3: roughly overview of SDKs ... 11
Figure 4: SmartCardCryptoFactory hirarchie ... 14

List of Tables
Table 1: crypto interfaces - impls - mapping to smartcard interfaces .. 20

cgJCE
running on - certgate

Version 1. 06/27/201 Page iv

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

0 About this Guide

This guide - written for application developers – gives information how to use certgate’s JCE
provider implementation with dedicated smartcards. Furthermore we give a brief overview
about the chosen architecture, the main idea behind our concepts, some featured managing
classes and how to load our JCE provider into your system. This guide is devided as follows:

Chapter 1.

First we introduce you with some basic knownledge about the JCE and its underlying
class layout.

Chapter 2.

Then we provide detailed information about the concepts used for implementing our
SmartCardAuthProviders and explain our SDKs.

Chapter 3.

 Afterwards we go more into detail and show the features of the managing classes re-
sponsible for creating and registering SmartCardAuthProviders to the system.

Chapter 4.

Followed by revealing the differences between our smartcard based provider services
and usual provider services.

Chapter 5.

Before we come to the end we explain how to load our providers.

Chapter 6.

Finally we give some examples which explain obscurities which may arised during read-
ing the previous chapters.

cgJCE
running on - certgate

Version 1. 06/27/201 Page v

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

Who is this guide for?

This guide is written for developers who intend to implement own smartcard based providers
(use of SDK) or just use the implemented SmartCardAuthProvider’s features to provide smart-
card based hardware security to their programs.

What typographical conventions are used?

Warning

Provides mandatory information which should always kept in mind

Note
Provides additional information on a topic, and emphasize important facts and considerations.

Note
You should have some basic understanding about Public-Key cryptography, digital certifi-
cates, digital signature and Public Key Infrastructure (PKI) in order for you to understand the
discussed topics.

cgJCE
running on - certgate

Version 1. 06/27/201 Page vi

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

1 Introduction to JCE

The Java Cryptographic Engine – short JCE – is a concept to simply supply developers with cryp-
tographic services. The concept includes several interfaces which shall be implemented via SPI
classes. A SPI class implements a specific cryptographic service and is then registered to a Pro-
vider. Providers1 are registered2 to the system and can be used by everyone who needs their
functionality. Within this chapter we give you some information about the basic concepts of
the JCE where detailed information can be found at www.oracle.com.

1.1 Provider

A provider can be seen as a kind of container offering different services. Each of its services is
registered to the provider before or after the provider is registered to the system. During sys-
tem registration the provider receives a priority number starting by 1 signaling highest priority.
This priority is necessary when someone requests a service not indicating from what provider it
shall come from. The JCE then seeks for the service and – assuming more than one provider
would offer that service – returns the one from the provider with the highest priority.

1.2 Service

A Service is an implementation of a SPI class offering a specific algorihm. Services can be regis-
tered before the containing provider is registered to the system or at any time later. Further-
more a Service can be de-registered at any time.

1.3 SPI

The JCE describes several SPI classes containing pre-defined functions. These functions are spe-
cific for the class-type and shall be implemented by the extending class implementing the spe-
cific algorithm. The JCE distinguishs between the following class types3:

 Cipher

 Signature

 MessageDigest

 KeyGenerator

 KeyPairGenerator

 SecureRandom

 KeyStore

1 cryptographic or non-cryptographic
2 static- or dynamically
3 there are even more SPI classes – within this document we only focus the ones we implemented

cgJCE
running on - certgate

Version 1. 06/27/201 Page vii

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

Each SPI class offers static functions in order to request a specific algorithm. Triggering this re-
quest is done provider specific or even anonym when it is not important where the service shall
come from. The following example shows three common variants how to receive e.g. a cipher
object implementing the RSA algorithm:

 //get RSA cipher from any provider who implements it

 //

 //in fact the service will come from the provider implementing it

 //having highest priority

 Cipher c = Cipher.getInstance("RSA");

//get RSA cipher from "myProvider"-provider

 Cipher c = Cipher.getInstance("RSA", "myProvider");

Provider xy = null;

//xy is retrieved somewhere

…

//get RSA cipher from provider-instance xy

 Cipher c = Cipher.getInstance("RSA", xy);

The last two examples do exactly the same. They use a specific provider – once identified by
the provider’s name, once identified by the instance – in order to get the RSA algorithm from it.

getInstance is supported by each SPI class and is always used for receiving algorithms.
When the algorithm can not be found at any provider / is unsupported by the provider an ex-
ception is thrown.

cgJCE
running on - certgate

Version 1. 06/27/201 Page viii

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

2 cgSmartCardProvider

Overall the JCE is more a software based crypto-solution i.e. the concept was not designed to
use cryptographic hardware. Nevertheless we implemented an own crypto provider based on
smartcards where most of the cryptographic calculations4 are executed in hardware. For this
purpose we desgined an own SDK extending providers as smartcard-providers. In this chapter
we give an overview of our basic concepts and all extra-features offered by smartcard-
providers.

2.1 SDKs

For future purposes we designed two SDKs. Both of them define base classes and implement
basic functionality. The SDKs are:

 cgSDK CORE

The CORE SDK is completely independent and defines the interfaces for the smartcard
layer. Furthermore it implements reader managing services and defines basic data
types.

 cgSDK JCE

The JCE SDK uses the CORE SDK and specifies the interfaces mandatory for the JCE lay-
er. Furthermore it implements the Java SPI classes mentioned in 1.3 but does not im-
plement any algorithm. Compared to usual SPI implementations they behave more
general and forward function calls to specialized implementations. For this purpose we
specified a set of own SPI interfaces (see 2.3.1 for details) which shall be implemented
by those specialisations.

The JCE SDK already implements the SmartCardProviders which serve the JCE.

Figure 1 shows how the SDKs are layered. On top there is an application which wants to make
use of the bottomed smartcard-layer. Between there are our SDKs which handle the requests in
conjunction with the Java JCE and the the layers which implement our interfaces.

The CORE SDK is independent and has no knownledge about JCE functionality. Its main purpose
is to manage smartcard readers and communicate with smartcards.

The JCE SDK uses the CORE SDK and serves the JCE where it does not need to know anything
about how the CORE SDK communicates with smartcards.

Due to this design decision we are be able to switch both implementation layers without chang-
ing the other.

4 all secure operations are completely executed on the smartcard. Public operations like verifying a signure may be

done in software.

cgJCE
running on - certgate

Version 1. 06/27/201 Page ix

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

2.2 Architecture

Before going into detail we first have to discuss the JCE’s architecture rougly depicted in Figure
2. On the left side there are the standard JCE classes where our special implementations are on
the right. Providers5 always contain the algorithms they provide as services. An algorithm is im-
plemented in an extended SPI class and then connected to a service. A service is then added to
a provider.

For extending the JCE with smartcard functionality we developed two smartcard concepts ex-
plained in 2.3. The SmartCardCryptoFactory handles the usual functionality offered by the
standard JCE where the SmartCardExtension brings new functionality dedicated for smartcards
(e.g. changing the PIN, unlock the user PIN, etc. …). For both concepts we created interfaces
which are used by our SmartCardAuthProvider.

Figure 3 gives a deeper look at the architecture and the SDK barriers. On top there is the JCE-
Impl layer which implements the JCE SDK’s interfaces and all necessary algorithms. Further-
more it implements a SmartCardAuthProviderManager which automates the whole creation &
registration process of providers (more in 3.3).

The JCE- and the CORE layer define interfaces for the top and bottom layers. They implement
the providers and other managing classes which are described in 3.

5 Provider / AuthProvider

Figure 1: abstraction layer / SDKs

cgJCE
running on - certgate

Version 1. 06/27/201 Page x

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

On the hardware layer also called the SmartCard Impl we handle the communication with the
smartcard and serve the interfaces defined in SDK CORE. We decided to use cgPKCS#11 which
already handles smartcard communication in conjunction with PCSC-lite.

Figure 2: System architecture JCE / JCE SDK

cgJCE
running on - certgate

Version 1. 06/27/201 Page xi

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

Figure 3: roughly overview of SDKs

cgJCE
running on - certgate

Version 1. 06/27/201 Page xii

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

2.3 Concepts

In order to implement smartcard based providers we developed two different concepts – one
for handling usual JCE tasks and another extending a provider’s functionality with smartcard
specific features. The SmartCardCryptoFactory covers the JCE features while the SmartCardEx-
tension brings the extra functionality. In the following we handle both concepts.

2.3.1 SmartCardCryptoFactory

The SmartCardCryptoFactory is a concept which serves the standard JCE functionality. The fac-
tory cooperates with the CORE SDK and has the following tasks:

 Query the CORE SDK which algorithms are supported by the smartcard:

o getSupportedStreamCiphers

o getSupportedSingleBlockCiphers

o getSupportedKeyPairGens

o getSupportedKeyGens

o getSupportedSignatures

o getSupportedDigests

Those functions class-specifically fetch the smartcards supported algorithms and
return them to the caller.

 Create crypto instances which can be forwared to the JCE:

o getStreamCipher

o getSingleBlockCipher

o getKeyGenerator

o getKeyPairGenerator

o getSignature

o getSecureRandom

o getKeyStore

o getDigest

Those functions create algorithm specific objects which are transferred to the cor-
responding generalized SPI class mentioned in 2.1. To be more precise each func-
tion is called with the demanded algorithm as parameter. SmartCardCryptoFacto-
ry’s task is then to create the matching instance and return it to the caller.

The SmartCardCryptoFactory uses the SmartCardCryptoFunctions- and SmartCardPersistent-
MemoryFunctions-interfaces defined in the CORE SDK. Both interfaces need to be implemented
at the smartcard layer.

The JCE SDK already implements generalized SPI classes for all the ones mentioned in 1.3. Usu-
ally someone has to extend from one of the Java SPI classes in order to implement a single al-
gorithm. Our SPI classes are implemented more generally and not algorithm specific since they
shall support dynamic loading i.e. when a provider detects that a card is present it querys which
hardware algorithms are supported by the smartcard and adds them as its provided services.

cgJCE
running on - certgate

Version 1. 06/27/201 Page xiii

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

Of course we could implement each supported algorithm as own SPI class but we found a solu-
tion making our providers quite more flexible.

First we analized the Java SPI classes and extracted all abstract functions to own SPI interfaces
(com.certgate.sdk.jce.crypto.interfaces). These interfaces are defined within the JCE SDK. Then
we extended and implemented the Java SPI classes (com.certgate.sdk.jce.crypto.spis) which
later make use of the objects implementing the SPI interfaces. For provider implementations it
is usually necessary to exactly know which algorithms are supported. Our design avoids that
circumstance and allows us to dynamically load the smartcards supported algorithms. Further-
more this design allows us that the JCE SDK already provides the whole logic for implementing
a provider – only the implementations of our SPI interfaces need to be additionally delivered.
This gives us the opportunity to deliver pre-signed code running on all machines6. Figure 4 illus-
trates the hirarchie of the concept. See 2.4.5 for more details.

6 on Oracle Java systems it is necessary to sign the provider with an Oracle signed certificate. Otherwise Cipher

SPI objects will not operate with the Oracle Java JCE!

cgJCE
running on - certgate

Version 1. 06/27/201 Page xiv

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

Figure 4: SmartCardCryptoFactory hirarchie

cgJCE
running on - certgate

Version 1. 06/27/201 Page xv

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

2.3.2 SmartCardExtension

The SmartCardExtension is a concept which extends the functionality of a SmartCardAuthPro-
vider with additional features. These features are:

 getRemainingAttempts

This function returns an enum representing how many login attemps can be executed
until the card is locked. These values represent “at least 2”, “last try” and “locked”. Un-
fortunately there is no indicator7 which enables us to differentiate between two or
three remaining tries.

 verifyPIN

This function validates the PIN for a specific user (SO / USER).

 changePIN

Changes the PIN for a specific user (SO / USER).

 overwriteUserPIN

Overwrites the users PIN.

 getFirmwareVersion

Returns the firmware version of the smartcard.

 getManufacturerID

Returns the manufacturer ID of the smartcard.

 getSerialNumber

Returns the smartcards serial number.

 getCardType

Returns the type of smartcard.

 getReaderName

Returns the reader name.

 getFreeMemorySizeByte

Returns the size of free memory in bytes.

 getSupportsRNG

Returns whether the smartcard supports a hardware random number generator.

 registerCardEventObserver

Registers an observer which will receive smartcard events.

 isCardPresent

Returns whether a smartcard is currently inserted.

7 we are using cgPKCS#11 for smartcard communication. PKCS#11 does not provide better information regarding

PIN retry attempts.

cgJCE
running on - certgate

Version 1. 06/27/201 Page xvi

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

The SmartCardExtension uses the SmartCardAdministrationFunctions- and SmartCardInfoFunc-
tions-interfaces defined in the CORE SDK. Both interfaces need to be implemented at the
smartcard layer.

In order to verify, change or overwrite / unlock PINs the smartcard is not allowed to be in pri-
vate state. For this reason re-load a potential privatly loaded keystore to public mode and en-
sure that no pending private operation is ongoing.

2.4 SmartCardAuthProvider

A SmartCardAuthProvider is extended from the standard Java class AuthProvider and uses the
concepts explained in 2.3. Nevertheless there are a few more concepts which are discussed
within the next subchapters.

2.4.1 Reader

The CORE SDK provides an easy to use reader concept handled by the ReaderManager (see
3.1). As soon as a reader is reserved a SmartCardAuthProvider shall bind it i.e. when more
readers are available potentially more than one SmartCardAuthProvider can be registered to
the Java system (see 3.3).

During the lifetime of a SmartCardAuthProvider the reader never changes. The reader can be
retrieved by calling getReader while calling getReaderState gives information about
whether a smartcard is inserted currently or not.

A SmartCardAuthProvider further on listens only to that reader and reacts to ReaderEvents.

2.4.2 ReaderEvent

We designed SmartCardAuthProviders to react on three different reader events:

o smartcard removal

When a smartcard is removed the SmartCardAuthProvider cancels all pending opera-
tions and unregisters it’s services. Furthermore all returned SPI objects (i.e. previously
returned services) e.g. a cipher and a keystore are locked and resetted (buffers &
states). Potentially cashed PINs are also cleared. Trying to use such a locked object will
always fail with an exception8.

o smartcard insertion

When a smartcard is inserted the SmartCardAuthProvider starts interacting. First all
card supported features are fetched and registered as services. Then the provider
transmits the smartcards serialnumber to all previously returned objects. The objects
compare the serial with the one once used for creation and unlock when the serials
match. Unlocked objects may need to be re-initialized (cashed PINs & states are gone).
A potentially returned keystore re-loads all contained objects in public mode. See more
about keystore modes in 4.2.

8 when the SPI object’s function is able to return an exception. Otherwise null is returned or nothing happens.

cgJCE
running on - certgate

Version 1. 06/27/201 Page xvii

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

o reader removal

When the reader is removed the provider unregisters itself at the SmartCardAuthPro-
viderManager and releases it’s services9. All objects returned by the provider are no
more usable and locked forever.

Furthermore a SmartCardAuthProvider can forward these events to all observer classes. For re-
ceiving such an event register your observer via addObserver. For unregistering a previously
registered observer call removeObserver. Observers (standard Java Interface) will receive
ReaderStateBundles which contain the new ReaderState and an instance of Smartcard (null
when card or reader where removed) as soon as an event happens.

2.4.3 Handlers / Callbacks

Typically there are several types of standard callbacks where in fact just one plays a special role
for our implementation – the password-callback. The password-callback is a standard Java class
which is used to prompt a notification to - and return a password from - a user. The way how
the user enters his password is chosen by the handler which is implementation specific.

For our implementation we distinguish between three handlers:

 The default callback handler

This handler is implemented by us which outputs the prompt on System.out and reads
a password via System.in.

 The application callback handler

This handler is implementer specific and can be set via setCallbackHandler.

 The login callback handler

This handler is implementer specific and is temporarily set via login. The handler stays
active as long as logout has not been called.

All three handlers have different priorities. As long as setCallbackHandler has not been
called (or was called with null) the default callback handler stays active. When a callback han-
dler was set via setCallbackHandler the application callback handler stays active as long as
no login occurs. When login was called (with handler != null) the login callback handler stays
active as long as logout has not been called. When logout was called the application callback
handler is active again or the default callbackhandler when no application callback handler was
set. To make a long story short – the login callback handler has the highest priority where in
contrary the default login handler has the lowest.

The password-callback is used to query the user for the smartcard’s PIN. The PIN is needed as
soon as the smartcard operates with private objects such as private- or secret keys. The PIN can
also be cached.

9 this only happens when the SmartCardAuthProvider was once registered to the ReaderManager. The registration

is executed as soon as the SmartCardAuthProvider is used the very first time.

cgJCE
running on - certgate

Version 1. 06/27/201 Page xviii

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

2.4.4 PIN caching

During a login / logout session the SmartCardAuthProvider will just ask once for the PIN
and will reuse it for all private operations10.

The same applies for the KeyStore. As soon as the keystore’s load function is called with a val-
id PIN no password-callback will be triggered until load is called again or the card is removed
and reinserted.

Additionally readers can be configured that the PIN is always cached as soon as it was once en-
tered successfully. The cache is active as long as the smartcard stays within the reader. On re-
moving the card all PIN caches are cleared. This also happens when the reader is removed or
detached by ReaderManager. This cache is activated on reader-attachment. For this purpose
set the appropriate flag to true when attaching the reader (see 3.1) enabling the PIN cache.

When PIN caching is disabled and no login / logout session is active the user is always
prompted for the PIN as soon as a cryptographic operation shall be executed.

2.4.5 SmartCardService

As we already learned providers offer specific services which can be retrieved by calling the
getInstance function of the several JCE’s SPI classes. Usually a provider is pre-defined i.e. an
implementer plans to support specific services / algorithms and adds them to his / her provid-
er. Then the provider is shipped e.g. within a library. Someone who wants to make use of the
provider creates an instance of it and registers the provider to the system11. Afterwards the de-
fined services can be retrieved and used as described in 1.3.

We implemented our providers more generally i.e. we did not pre-define which algorithms we
support. In fact our provider itself makes the desission which algorithms it supports during
runtime. Therefore it uses the CORE SDK to communicate with the reader it’s bound to and
asks whether a smartcard is inserted. When a smartcard is inserted the CORE SDK returns all
available algorithms supported by the smartcard. Afterwards these algorithms are registered as
the providers services.

Usually the registration needs fixed classes where each one implements a single algorithm. Also
our provider works this way but indeed it adds always the same SPI class type. The following
example will give some clarity:

Someone plans to implement a provider offering a RSA - and an EC keygenerator. Therefore he
/ she would extend from Java KeyPairGeneratorSpi two times:

 One for the RSA keygenerator implementation called class A.

 Another for the EC keygenerator implementation called class B.

Both classes would be implemented algorithm specific and then added via

 provider.putService(new Service(this, "KeyPairGenerator", "RSA", class A, null, null));

 provider.putService(new Service(this, "KeyPairGenerator", "EC", class B, null, null));

10 only when the entered PIN was correct.
11 there is also a way to activate the provider statically for all programs. To do so the provider has to be installed

into the Java archive. For more information see 5.1.1.

cgJCE
running on - certgate

Version 1. 06/27/201 Page xix

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

Our provider is working differently since it shall support dynamic algorithm loading. Lets use
the given example in order to explain that.

For each supported SPI class we implemented a generalized class like KeyPairGenSpi in our JCE
SDK. This class needs an instance of our CryptoKeyPairGenerator interface which is received
during runtime.

So for this example someone would need to implement two classes implementing the Cryp-
toKeyPairGenerator interface:

 One for the RSA keygenerator implementation called impl A.

 Another for the EC keygenerator implementation called impl B.

Both classes would be implemented algorithm specific and then added via

 provider.putService(new Service(this, "KeyPairGenerator", "RSA", KeyPairGenSpi, null, null));

 provider.putService(new Service(this, "KeyPairGenerator", "EC", KeyPairGenSpi, null, null));

The KeyPairGenSpi then has to decide during runtime which instance – impl A or impl B – shall
be used. So another step would be to register the “impls” at KeyPairGenSpi.

For this reason we implemented the SmartCardService class and another interface called
SmartCardProviderSpi. The SmartCardService receives an object type called Algorithm instead
the algorithm name like “RSA” or “EC” and extends from Service. SmartCardService has an
overloaded newInstance function which makes use of the SmartCardProviderSpi interface
implemented in KeyPairGenSpi. Instead of putting a service we then put a SmartCardService
like this way:

provider.putService(new SmartCardService(this, "KeyPairGenerator", keyPairGen, KeyPairGenSpi, null, null));

where keyPairGen is an instance of type Algorithm which is dynamically received from the
smartcard via the CORE SDK. The newInstance function of SmartCardService then later uses
the SmartCardProviderSpi’s declared setSpiProperties function implemented in KeyPair-
GenSpi which communicates with the SmartCardCryptoFactory in order to receive the correct
algorithm instance of type CryptoKeyPairGenerator indicated in keyPairGen.

In fact we even more simplified the necessity to implement impl A and impl B. Actually we only
need to implement one impl per interface! See 2.4.6 for more information.

The “KeyPairGenSpi -uses-> CryptoKeyPairGenerator”-concept applies to all of our supported
SPIs (see 1.3).

2.4.6 Crypto Impls

So far we have learned most of our concepts which turn usual AuthProviders into Smart-
CardAuthProviders. Both SDKs – the CORE SDK and the JCE SDK – implement most of the logic
used for provider creation / registration. On the top layer we implemented all necessary inter-
faces required for the JCE SDK. Besides the SmartCardExtension and the SmartCardCryptoFac-
tory these are the Crypto-interfaces listed in Table 1.

We implemented a class – called the “impl” – for each of the interfaces. Each impl is able to
communicate with the smartcard and uses whether the SmartCardCryptoFunctions- and / or

cgJCE
running on - certgate

Version 1. 06/27/201 Page xx

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

the SmartCardPersistensMemoryFunctions-interface depicted in Figure 312. Those two interfac-
es satisfy all the needs of the impls. Table 1 additionally shows how the interfaces are used by
which impl.

Interface Used Functions

CryptoCipher SmartCardCryptoFunctions->decrypt

SmartCardCryptoFunctions->encrypt

SmartCardCryptoFunctions->wrapKey

SmartCardCryptoFunctions->unwrapKey

CryptoKeyGenerator SmartCardCryptoFunctions->generateKey

CryptoKeyPairGenerator SmartCardCryptoFunctions->generateKeyPair

CryptoKeyStore SmartCardCryptoFunctions->registerSmartCardKeyGenerationObserver

SmartCardPersistentMemoryFunctions->createObject

SmartCardPersistentMemoryFunctions->deleteObject

SmartCardPersistentMemoryFunctions->modifyObject

SmartCardPersistentMemoryFunctions->setCachedPIN

SmartCardPersistentMemoryFunctions->findPublicObjects

SmartCardPersistentMemoryFunctions->findPrivateObjects

SmartCardPersistentMemoryFunctions->loadPrivate

SmartCardPersistentMemoryFunctions->loadPublic

CryptoMessageDigest SmartCardCryptoFunctions->hash

CryptoSecureRandom SmartCardCryptoFunctions->generateRandom

SmartCardCryptoFunctions->seedRandom

CryptoSignature SmartCardCryptoFunctions->sign

SmartCardCryptoFunctions->verify

Recently we mentioned that each algorithm – determined for being offered by the provider –
should be implemented in an own impl. Since the SmartCardCryptoFunctions-interface func-

12 the names of the interfaces where shortened there. SmartCardCryptoFunctions map to SmartCardCrypto, Smart-

CardPersistensMemoryFunctions to SmartCardMemory.

Table 1: crypto interfaces - impls - mapping to smartcard interfaces

cgJCE
running on - certgate

Version 1. 06/27/201 Page xxi

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

tions always carry the intended algorithm even the impls only need to be implemented once13
per SPI class because they can potentially forward the demanded algorithm. This leads us to the
point that the lowest layer needs to be able to switch between the algorithms since there is no
algorithm specific implementation on the upper layers. More precisely this means that the bot-
tom layer has to implement the algorithms used for the services14.

We decided to use cgPKCS#11 at the bottom layer since this avoids implementing algorithm
specific APDU commands for all different crypto features offered by the smartcard. PKCS#11
exactly does this job for us and switches automatically between the distinct algorithms by using
pre-defined algorithm IDs. Also all the other CORE SDK features offered by our interfaces can
be implemented by using PKCS#11.

13 as we did this for the SPIs
14 usualy – as we learned – this would be achieved by implementing serveral SPIs

cgJCE
running on - certgate

Version 1. 06/27/201 Page xxii

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

3 Managing Classes

Now as we handled the basics of the JCE and our concepts to enable smartcard based providers
we can discuss our manager instances which already implement the most of the logic to create,
register and return our providers.

3.1 ReaderManager

The ReaderManager is the most important class within our framework. It communicates with
the system via the ModuleManager and manages all available readers. It offers different ser-
vices which are necessary to create a SmartCardAuthProvider. We now should exemplarily go
through these services step by step:

1. First an instance of the ModuleManager interface has to be declared to the Reader-
Manager. See 3.2 for detailed information of the ModuleManager’s tasks. The declara-
tion is executed by calling setModuleManager.

2. This will lead the ReaderManager to receive the ModuleManagers default module and
automatically register it by calling registerNewModule.

Modules are kind of drivers responsible for communicating with a smartcard-reader /
smartcard. Each module is able to communicate with a set of smartcard-readers con-
nected to the system. The combination Module / Reader is a unique identifier which
lets the ReaderManager know which module it shall use in order to communicate with
a reader. Two distinct modules can also share a reader. The ReaderModuleDescription
stores this unique identifier and is used by the ReaderManager to address the readers
via different modules (drivers).

For each module registered to the ReaderManager a new thread is started which lis-
tens to reader events. See 2.4.2 for details about reader events.

A module can be also unregistered by calling unregisterModule. This would stop the
module’s listening thread and detach all the readers managed by the module. Readers
shared with other modules would still be accessible by the other modules.

As soon as a module is registered to the ReaderManager the readers adressed by the
module are accessible via the ReaderManager.

3. Now a module is registerd and the ReaderManager is able to address some readers.
Next we can call getSystemReaders which returns us all ReaderModuleDescriptions
currently available.

4. With such a ReaderModuleDescription we can attach a reader by calling attachRead-
er. This call will create a reader instance which is exclisivly reserved and can not be
generated a second time. With this reader instance we can create a Smart-
CardAuthProvider.

We can also detach a reader by calling detachReader. The reader then sends a signal
to all its observers that the reader has been detached. The SmartCardAuthProvider lis-
tening to that reader then stops operating.

cgJCE
running on - certgate

Version 1. 06/27/201 Page xxiii

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

Other features offered by the ReaderManager are:

 setSystemEventHandler

The systemEventHandler is able to react on reader-added and reader-removed events
triggered by the ReaderManager. This function registers the handler at the Reader-
Manager. The interface is implemented by the SmartCardAuthProviderManager (see
3.3).

 getDetachedReaders

This function returns all the readers that have not been reserved by attachReader.

 getAttachedReaders

This function returns all the readers that have been previously reserved by atta-
chReader.

 unregisterAllModules

This function unregisters all modules currently registered. See 2.)

 isSmartCardInserted

This function returns wheter a smartcard is inserted for the given ReaderModuleDe-
scription.

 getFirstAdditionallyReader

Additionally readers can be pre-configured. An additionally reader is a reader which is
not directly avaible to the system but may will be accessible in the future such as a e.g.
bluetooth reader. So even for those readers which are currently not present providers
can be created.

Additionally readers are linked to each module i.e. when two additionally readers are
pre-configured and three modules registered there are at least six ReaderModuleDe-
scriptions available at the ReaderManager.

This function returns the very first of it where the order depends on the registration
order of the modules and the configuration order of the additionally readers.

3.2 ModuleManager / P11ModuleManager

The ModuleManager shall15 be responsible for managing different modules. The instance’s
tasks are:

 getDefaultModules

15 the ModuleManager is an interface

cgJCE
running on - certgate

Version 1. 06/27/201 Page xxiv

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

The ModuleManager shall be able to at least return one default module i.e. it shall be
shipped with at least one driver able for communicating with smartcard-readers.

 getDefaultAdditionalReaders

See 3.1 for description of additionally readers. This function shall return the default
ones.

 getDefaultAdditionalReaderInfo

Any reader contains ReaderInfo. In order to support that feature for additional (uncon-
nected) readers this function shall return the ReaderInfo for an additionally reader.

 registerModule

Readers connected to the system shall be addressable by different modules / drivers.
This functions registers a new module and shall enable communication with supported
readers.

 unregisterModule

This function shall (detach and) remove all readers addressable by that module.

 getRegisteredModule

Shall return all registered modules.

 getCompatibleReaders

Shall return all readers which are addressable by the given module.

 existsReader

Shall check whether the reader exists / is addressable.

 isAdditionallyReader

Shall check whether the reader is an additionally reader.

 getReaderState

Shall check the state of the reader.

 getReaderInfo

Shall return the reader info.

 getModuleInfo

Shall return the module info.

 getSmartcard

Shall create a smartcard instance.

 waitForModuleEvent

Shall wait until an event happens like – reader added, reader removed, smartcard in-
serted into reader, smartcard removed out of reader.

cgJCE
running on - certgate

Version 1. 06/27/201 Page xxv

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

The ModuleManager interface is implemented by the P11ModuleManager which uses the
cgPKCS#11 in order to communicate with smartcards. The cgPKCS#11 can be seen as a single
module and is used as default module by the P11ModuleManager.

3.3 SmartCardAuthProviderManager

The SmartCardAuthProviderManager offers the opportunity to do all the steps 1. – 5. shown in
3.1 automatically. The offered services are:

 registerSmartCardProvider

A SmartCardAuthProvider is automatically registered to the system. First the provider is
created and then registered by Security.addProvider.

 unregisterSmartCardProvider

First the reader the provider is listening to is detached. Then the provider is unregisted
at the system by calling Security.removeProvider. On detach all objects returned
by the provider are signaled that the reader was detached. These objects are no more
useable. Accessing such an object will fail with an exception.

 registerAllAvailableProviders

Creates and registers SmartCardAuthProviders for each ReaderModuleDescription
which is available and has not been attached in the system.

 getRegisteredSmartCardProviders

Returns all available SmartCardAuthProviders which where registered by the Smart-
CardAuthProviderManager. SmartCardAuthProviders created and registered manually
are not returned.

 getAdditionallyRegisteredSmartCardProviders

Returns a subset of providers which are based on additionally readers. This subset is al-
so included in getAdditionallyRegisteredSmartCardProviders

 getRegisteredSmartCardProvidersWithSmartCardInserted

Returns all SmartCardAuthProviders which are ready to use / have a smartcard insert-
ed.

Furthermore the SmartCardAuthProviderManager implements the SystemEventHandler-
interface and selfregisteres16 at the ReaderManager which makes it capable of receiving read-
er-added and reader-removed events.

 onSystemEventReaderAdded

When a new reader is added to the system and the SmartCardAuthProviderManager
was called once before a new provider is automatically added to the system.

16 as soon as getInstance was called once. Otherwise the SmartCardAuthProviderManager stays uninitialized and

does not react on events.

cgJCE
running on - certgate

Version 1. 06/27/201 Page xxvi

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

 onSystemEventReaderRemoved

When a reader was removed and the SmartCardAuthProviderManager was called once
before the provider is unregistered from the system.

cgJCE
running on - certgate

Version 1. 06/27/201 Page xxvii

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

4 Differences JCE

As we mentioned earlier the JCE is not intended for hardware usage. Even when we achieved
the usecase in combining JCE providers with smartcards not all features of the standard JCE can
be satisfied. Also there are some deviations regarding the expected behavior compared to the
standard JCE. Within this chapter we clarify which functions / features do not behave like they
would be expected.

4.1 Objects

Whenever a key is created or returned by one of our JCE classes actually this is not directly the
key itself. Smartcards internally operate with keyIDs – or more general – handles and will not
return the complete key but rather the handle. Private keys / Secret keys will even never leave
the card since they are stored in the smartcard’s protected area. Due to this reason our JCE
classes always return a wrapped key handle and never the binary key data.

The same applies to certificates and data objects. Whenever an object is retrieved this is actual-
ly not the binary data of the object but rather a handle for accessing it.

In other words – objects received from our JCE classes are not useable with other JCE classes of
different providers!

You even can not use objects from one SmartCardAuthProvider bilaterally with another one!

For instance someone has a private key handle received from SmartCardAuthProvider A’s key-
store. Furthermore there is a cipher-object created and returned from SmartCardAuthProvider
B trying to use to encrypt with the key handle from A. This does not work since both objects
operate on two different cards.

Certificates and public keys are able for being extracted in ASN1 raw data by getEncoded
function.

4.2 KeyStore

As we learned in 4.1 all objects returned by our JCE classes are wrapped object handles. This
concept also applies for outgoing objects of our keystore implementation while importing
works as usual.

Before operating our keystore has to be loaded like each usual keystore by calling the load
function. The first parameter stream is ignored while the second – password – plays a special
role. When no password is given the keystore is loaded in public mode i.e. only public objects
will be returned.

Lets clarify this within an example. First someone loads the keystore with both parameters set
to null. Afterwards getKey is called with an alias usually storing a private and a public key.
Since in public mode all private objects are invisible the function will return the public key.

cgJCE
running on - certgate

Version 1. 06/27/201 Page xxviii

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

Now we assume calling load carrying null as first parameter and the smartcard’s PIN as the
second one. This loads our keystore in private mode i.e. all objects are visible. The same get-
Key call now results in returning the private key.

Now someone could have the idea retrieving both keys – the public and the private key – by
calling getKey in different modes. This would of course work for usual keystores but not for
ours. As we learned in 4.1 our keys are implemented via handles. As soon as the load function
is called all previously received handles are no more guilty. In order to retrieve both keys
someone first has to call the load function with the correct PIN. Afterwards the private key can
be received by calling the getKey function. Getting the public key needs two steps. First call
the getCertificate function. Then use the certificate instance and call it’s getPublicKey
function.

The keystore is the only object which permanently connects to the smartcard and must be
loaded in private mode in order to use private cryptographic operations from other SPI objects
like Cipher and Signature.

Before using the SmartCardExtension ensure unloading the keystore from private- to public
mode! Otherwise the SmartCardExtension’s functions being able to throw SmartCardInUseEx-
ception will return with that error.

When a keystore was previously loaded and the smartcard is removed and reinserted the key-
store will automatically reload in public mode.

4.3 KeyPairGenerator / KeyGenerators

As shown in 4.2 only the keystore opens a permanent connection to the smartcard. All other
SPI objects generated from a SmartCardAuthProvider just open a temporary connection. This
also applies for KeyGenerator / KeyPairGenerators.

When a Key- /KeyPairGenerator generates a key and the keystore was not yet loaded or loaded
in public mode retrieved keys do not contain valid handles. In this case you have to load the
keystore in private mode and receive the handle(s) again with the correct alias! You can extract
the alias from invalid objects by calling getID after you casted them to SmartCardObject.

When a Key- /KeyPairGenerator generates a key and the keystore was loaded in private mode
the handles retrieved by the generateKey / generateKeyPair stay valid as long as the keystore is
reloaded or the smartcard is removed.

When the keystore is not loaded in private mode KeyGenrators or KeyPairGenerators do not
return valid object handles!

cgJCE
running on - certgate

Version 1. 06/27/201 Page xxix

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

4.4 Configuration

Our SmartCardAuthProviders and even some parts of the SDKs where designed to be configu-
rable. Currently we support to disable specific algorithms and allow PIN caching. In the follow-
ing we will discuss those features.

4.4.1 Disable Algorithms

We learned that each SmartCardAuthProvider offers the cryptographic algorithms available on
the currently inserted smartcard as services. For instance some of those algorithms could be
outdated, broken or not recommended for some usecases. For this scenario we implemented
the “DISABLED_ALGORITHMS” feature.

In order to disable some of the algorithms a provider would usually offer17 someone can use
the “DISABLED_ALGORITHMS”-property during the instantiation of the SmartCardAuthProvider.
The property shall carry all the algorithms which shall not be offered by the provider separated
by a “;”. The following example shows how some of the services can be disabled:

Properties prop = new Properties();

String disabledAlgorithms = "";

disabledAlgorithms += "RSA/NONE/PKCS1Padding;";

disabledAlgorithms += "DES3";

p.setProperty("DISABLED_ALGORITHMS", disabledAlgorithms);

SmartCardAuthProvider provider = new SmartCardAuthProvider(prop,

reader, extension, factory);

4.4.2 PIN Caching

So far we have learned that there are several situations where a prompt to the user is necces-
sary in order to get the smartcard’s PIN. Those situations are always processes doing private
smartcard operations i.e. using private- or secret-keys. Since it would be quite annoying for the
user to re-enter the PIN all the times we implemented PIN caching. In some situations PIN cach-
ing is mandatory since otherwise functional expectations would be violated. In some others it is
optional and can be prohibited. Lets have a look at those situations:

 During a login / logout session18 the PIN is asked once and always stays cached.
This situation can’t be prohibited since it would violate the expectations a user might
have from previous uses of the JCE.

 As soon as a keystore is successfully loaded in private mode by using the load-function
the PIN stays cached as long as the load-function is called again or the smartcard is re-

17 or to be more precise a smartcard would usually offer
18 those functions are offerd by AuthProviders

cgJCE
running on - certgate

Version 1. 06/27/201 Page xxx

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

moved. PIN caching within keystores is always independent from login / logout
sessions and can not be prohibited.

 During the instantiation of a reader PIN caching can be allowed or not. When PIN cach-
ing was activated and the PIN was once entered correctly the PIN stays cached as long
as the smartcard is removed. When a PIN was cached and login is called the user will
not be asked for the PIN.

When no PIN caching and no login session is active the user is always prompted for
the PIN as soon as a private cryptographic operation shall be executed.

A SmartCardAuthProvider instantiated with this reader will use PIN caching for it’s
complete lifetime!

cgJCE
running on - certgate

Version 1. 06/27/201 Page xxxi

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

5 Loading our JCE

After we have learned everything we need to know we now can focus on the concepts loading
our JCE. Therefore we have to distinguish between standard Java platforms and special Java
implementations like the one for Android.

On standard Java systems we ship a simple jar-file which can be used as library to dynamically
load our JCE. There is also a static installation method that enables our JCE being present in the
whole Java Runtime Environment.

Contrary to the standard Java system there is no static installation available for Android. Here
developers would always have to link our library to their program in order to use our JCE. Due
to this reason we developed our own loader concept for Android which enables our JCE being
preinstalled once per device and avoids multi-linking for serveral apps. Lets have a deeper look
at those concepts.

5.1 Loading our JCE on Windows / Linux – standard Oracle Java

On standard Java / Oracle platforms there are two ways of installing our SmartCardAuthProvid-
er. We whether have the choice to install the SmartCardAuthProviders statically to our system
or loading it dynamically.

5.1.1 Static installation

In order to install the static provider there are two steps necessary. First we have to install19 the
jar-library to the “Java\lib\ext” folder where Java points to the location of your installed JRE.
Afterwards we have to edit the “java.security” file stored in “Java\lib\security” and add the fol-
lowing line where X is a number starting at 1:

security.provider.X=com.certgate.jce.staticinstall.StaticSmartCardAuthProvider

Higher numbers mean lower priority. The priority can be seen as a order for asking the provid-
ers if they support a demanded algorithm when it is equal where the algorithm comes from.
We suggest using 1 as priority and increment all other providers previously listed in that file. Af-
ter a restart of the JRE each Java program will be able to use our provider. The provider - if nec-
essary - can be retrieved by using the following lines of code:

AuthProvider p = Security.getProvider("CERTGATE SmartCard Provider");

When this line is executed the first time20 the StaticSmartCardAuthProvider is initialized and
will use the first reader which has a smartcard present. When no reader is found or no reader
has a smartcard inserted the reader returned by getFirstAdditionallyReader is used (see
3.1 for more information).

When it is intended to load the providers dynamically to the system neither install the jar li-
brary to the “Java\lib\ext” folder nor insert the entry to the “java.security” file!

19 just copy
20 within a program

cgJCE
running on - certgate

Version 1. 06/27/201 Page xxxii

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

5.1.2 Dynamic loading with SmartCardAuthProviderManager

When our jar-library is linked to your code it is recommended to use the SmartCardAuthPro-
viderManager to initialize all providers i.e. for each smartcard reader found within your system
an own provider is created. This can be done with:

SmartCardAuthProviderManager.getInstance().registerAllAvailableProviders();

The registered SmartCardAuthProviders can e.g. be retrieved by:

SmartCardAuthProviderManager.getInstance().getRegisteredSmartCardProviders();

5.1.3 Dynamic loading with our SDK / library

The SmartCardAuthProviderManager gives the opportunity to register single or even all provid-
ers which are available21. This can be also done manually by our SDK. For doing so you have to
execute the following steps:

1. Register the P11ModuleManager at the ReaderManager

 ModuleManager moduleManager = P11ModuleManager.getInstance();

ReaderManager.getInstance().setModuleManager(moduleManager);

2. Cycle through all available ReaderModuleDescriptions, create a SmartCardAuthProvider
and add it to the system

Vector<ReaderModuleDescription> descriptions = ReaderManag-

er.getInstance().getDetachedReaders();

for (ReaderModuleDescription d : descriptions)

{

Reader r = ReaderManager.getInstance().attachReader(true, d);

SmartCardExtension ext = new SmartCardExtensionImpl(r);

SmartCardCryptoFactory fac = new SmartCardCryptoFactoryImpl(r);

SmartCardAuthProvider provider = new SmartCardAuthProvider(null, r, ext,

fac);

Security.addProvider(provider);

}

5.2 Loading our JCE on Android

Since there is no static way for installing SmartCardAuthProviders to the whole22 Android sys-
tem usually a developer would need to link our library to his application binary. When we e.g.
release a new bugfixed version of our library it can be a quite annoying task to build up the own
application again just for re-linking the third party library. Due to this reasons and the Java
sandbox limitations we developed an own loader concept allowing to install our cgJCE once per
device and then use it from all applications. Indeed it is necessary to link another jar library but

21 in fact this depends on the readers available
22 i.e. that all applications can use the providers

cgJCE
running on - certgate

Version 1. 06/27/201 Page xxxiii

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

this one is likely not intended for changing a lot and just a very small fraction regarding the
filesize compared with our complete cgJCE library. This light weighted library is called the
“loader”.

The loader is responsible for loading the pre-installed cgJCE into the context of the appropriate
application and automatically23 runs the necessary initialization procedures. Afterwards the
SmartCardAuthProvider can be easily used as Java standard AuthProvider.

Furthermore the loader brings some wrapper classes. Since loading our cgJCE with the loader
disables the use of our JCE SDK classes24 we have written wrapper classes using reflection calls
to nearly simulate our JCE SDK.

The SmartCardAuthProviderWrapper itself is no provider class but offers nearly the same func-
tions as the SmartCardAuthProvider. For retreiving the provider – for e.g. direct getInstance
calls as shown in 1.3 – getProvider has to be called.

SmartCardAuthProviders would usually offer to register observers. This is not available for the
SmartCardAuthProviderWrapper but there is a replacement instead. The wrapper offers to reg-
ister a SmartCardAuthProviderEventCallbackHandler which also forwards SmartCardEvents and
can be registered or unregistered via registerSmartCardEventHandler and unregis-
terSmartCardEventHandler. As SmartCardExtension it returns a SmartCardExtension-
Wrapper via getSmartCardExtension.

The SmartCardExtensionWrapper has almost the same functionality as the SmartCardExtension
but has some minor deviations. Instead of a parameterized getRemainingAttempts function
there are getRemainingAttemptsUser and getRemainingAttemptsAdmin instead. The
same concept applies to the verifyPIN and changePIN functions.

When using the loader the JCE is initialized with the following steps:

1. Implement the LoaderCallback

The LoaderCallback-interface contains a function which is called when the loader has
finished its job in order to signal that the providers are ready to use.

2. Call ProviderLoader.load function

This function starts our cgJCE providers being loaded asynchronously.

3. Wait until LoaderCallback is called before using the cgJCE providers.

When the LoaderCallback receives the final onLoaded call our cgJCE providers were
loaded and are now ready to use.

For easier integration we also implemented an AsyncTask called the InitJCETask. It offers to ini-
tialize the whole cgJCE with just one line of code by calling

new InitJCETask(applicationContext, null, true).execute();.

The above line of code does not supply a OnTaskFinishedCallback (null) whereas it would return
the opertions result. For more information see the loader whitepaper. We recommend to al-

23 if wished
24 due to class loader issues instances of SmartCardAuthProvider can not be casted to the JCE SDK classes or

interfaces

cgJCE
running on - certgate

Version 1. 06/27/201 Page xxxiv

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

ways use the LoaderCallback or the OnTaskFinishedCallback since they signal that the loading
process has finished.

When the loading-job is finished the providers are registered to the system and can be used as
usual.

cgJCE
running on - certgate

Version 1. 06/27/201 Page xxxv

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

6 Examples

