

provider loader
for Android

Whitepaper

Version 1.0

07/13/2016

Autor: certgate

provider loader - certgate Version 1. 07/13/201 Page i

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

Document History

Version Date Autor Notes

1.0 13.07.2016 certgate -

provider loader - certgate Version 1. 07/13/201 Page ii

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

Content

1 Concept ... 3

1.1 How the loader works .. 3

2 Features .. 6

2.1 ProviderLoader ... 6

2.2 SmartCardAuthProviderWrapper .. 6

2.3 SmartCardExtensionWrapper .. 7

provider loader - certgate Version 1. 07/13/201 Page iii

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

1 Concept

The Android provider loader concept was written due to the following reason:

Contrary to the Oracle Java implementation Google’s Android Java does not support the instal-
lation of static providers. A static provider is a provider that can be installed to the system and
is then available to each application. This concept is quite nice because everyone can use this
provider as soon as it is needed whithout having other dependencies. There is also a benefit re-
garding software update policies. When the provider is updated the programs using it don’t
need to be re-compiled. Unfortunately Android Java does not support this concept!

In order to support this concept as best as we can we designed the provider loader. It’s task is
to load the cgJCE providers into the context of an application without linking the cgJCE library /
APK. The cgJCE is preinstalled once per device and can be updated at any time without re-
compiling other programs. The programs using our cgJCE just have to link the quite small loader
library which is less intended for changes and can then load and use our providers. In the fol-
lowing we have a deeper look at this concept.

1.1 How the loader works

Due to security reasons we designed our loader only being able to load a JCE package which
was signed by us. So before the loader starts to load anything regarding the JCE it first checks
wheter the installed cgJCE was signed with our certificate.

If that is the case the loader uses the applications class loader to load the cgJCE classes into its
own context. After this step the loader calls a predefined function via reflection in order to load
the cgJCE. When this process is finished our providers can be either retrieved by the system or
by our loader. The “finished” signal can be received via an optional callback. Lets have a look at
the two different loading procedures.

1.1.1 Manual usage of the loader

First we recommend to implement the LoaderCallback interface in order to receive the “on-
Loaded” event. This call is triggered as soon as the cgJCE finished loading. Loading itsself hap-
pens asynchrously i.e. the loader starts the loading process and returns immediately1. When
the job has finished “onLoaded” is called2.

We also recommend checking whether the cgJCE is installed by isProviderInstalled. Also check if
the providers are already loaded by isProviderAvailable before calling the load function.

An example could look like this:

1 in fact it is not completely but almost immediately since we have to preload a legacy provider in order to guaran-

tee compatibilityness to programs using older versions of our JCE.
2 when the callback is implemented and given as parameter on “load” call

provider loader - certgate Version 1. 07/13/201 Page iv

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

public class LoaderSample implements LoaderCallback

{

 Context _c;

 public LoaderSample(Context c)

 {

 this._c = c;

 }

 @Override

 public void onLoaded()

 {

 //loading the JCE has finished

 //get provider

 Provider p = Security.getProvider("CERTGATE");

//do something with the provider

…

 }

 public void startLoading() throws ProviderLoadingFailedException, Pro-

viderSignatureInvalidException, ProviderNotFoundException

 {

 if (ProviderLoader.isProviderInstalled(this._c))

 {

 if (!ProviderLoader.isProviderAvailable())

 {

 ProviderLoader.load(this._c, this);

 }

 else

 {

 //already loaded!

 }

 }

 else

 {

 //not installed!

 }

 }

}

provider loader - certgate Version 1. 07/13/201 Page v

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

1.1.2 Automated loading via JCEInitTask

For easier integration we implemented the JCEInitTask which extends from Android’s Async-
Task and loads the cgJCE with more detailed success / failure information.

It is recommended to implement the OnTaskFinishCallback since it gives information about
how the loading resulted.

Furthermore loading the cgJCE by this task gives the opportunity to fade-in a progress- or a cus-
tom dialog which dissapears after the loading has finished. This makes sense when the user
shall be blocked or notified as long as the cgJCE is loading. The usage of this dialog is optional.
When null is used as parameter a default progress dialog is shown to the user otherwise the
custom dialog appears. There is also a constructor for not using any dialog.

Additionally there is the option to show message toasts when loading starts and finishes.

The following example shows how to use the JCEInitTask.

public class LoaderSample implements OnTaskFinishedCallback

{

 Context _c;

 public LoaderSample(Context c)

 {

 this._c = c;

 }

 public void startLoading()

 {

 new InitJCETask(this._c, null, this, false).execute();

 }

 @Override

 public void onFinished(JCELoadResult result)

 {

 switch (result)

 {

 case E_ALREADY_LOADED:

 break;

 case E_NOT_INSTALLED:

 break;

 case E_SUCCESS:

 //get providers

 ProviderLoader.getProviders();

 break;

 case E_UNSPECIFIED_ERROR:

 break;

 }

 }

}

provider loader - certgate Version 1. 07/13/201 Page vi

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

2 Features

Besides loading the cgJCE the loader has some other features e.g. receiving the registered pro-
viders. Furthermore the loader offers two wrapper classes which simulate some of the JCE SDK
functions. Due to our loader concept and other classloader issues it is not possible to integrate
our JCE SDK into the loader. In order to offer the most important functions regarding Smart-
CardAuthProviders we implemented the wrappers which use reflection calls to execute the de-
sired functions. Lets have a look at the most important loader features.

2.1 ProviderLoader

 getProviders

Returns a vector of SmartCardAuthProviderWrappers.

 load

Loads the cgJCE and registers all available SmartCardAuthProviders.

 isProviderInstalled

Returns whether the cgJCE APK is installed in the device.

 isProviderAvailable

Returns whether the cgJCE as already loaded.

2.2 SmartCardAuthProviderWrapper

Each SmartCardAuthProvider registered by the cgJCE can be recevied by calling Securi-
ty.getProvider. Calling that function results in returning the provider as Provider class3. Since
the standard Java Provider class does not support our features we would like to cast the re-
ceived instance to SmartCardAuthProvider. As already mentioned we are unable to include our
JCE SDK into the loader due to classloader issues in conjunction with our loader concept. For
this reason we implemented the SmartCardAuthProviderWrapper. This class is a wrapper for
SmartCardAuthProviders and simulates their functionality. For SmartCardAuthProviderWrapper
construction we need a SmartCardAuthProvider received by Security.getProvider which is re-
turned as Provider. After constructing an instance of SmartCardAuthProviderWrapper all fea-
tures of a SmartCardAuthProvider are available as wrapped reflection function calls. These
functions are:

 login

 logout

 setCallbackHandler

 getName

 getServices

 registerSmartCardEventHandler

3 when the provider exists / was registered

provider loader - certgate Version 1. 07/13/201 Page vii

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

 unregisterSmartCardEventHandler

 getSmartCardExtension

 getProvider

All functions behave like specified in the JCE where getProvider is additionally. This function is
used for receiving the original provider when the wrapper is not enough4. For more information
regarding the functions see the JCE specification on www.oracle.com.

2.3 SmartCardExtensionWrapper

For the SmartCardExtensionWrapper applies the same as for the SmartCardAuthProviderWrap-
per – since we are unable to integrate the JCE SDK into the loader we need a wrapper for simu-
lating the desired functions. The functions are:

 getRemainingAttemptsUser

 getRemainingAttemptsAdmin

 verifyPINUser

 verifyPINAdmin

 changePINUser

 changePINAdmin

 overwriteUserPIN

 getFirmwareVersion

 getManufacturerID

 getSerialNumber

 getCardType

 getReaderName

 getFreeMemorySizeByte

 getSupportsRNG

 isCardPresent

For more information regarding the functions see the cgJCE dokumentation.

4 for instance for Cipher.getInstance(algoName, providerInstance) calls.

