

cgMiddleware
 platform independant

User Guide

Version 1.0

05/31/2016

Autor: certgate

cgMiddleware

Version 1.0 05/31/2016 Seite 1 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

Document History

Version Date Autor Notes

1.0 31.05.2016 certgate -

cgMiddleware

Version 1.0 05/31/2016 Seite 2 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

Content

0 About this Guide ... 4

1 Introduction to PKCS#11 ... 6

1.1 Basic principles of PKCS#11 .. 7

1.2 Workflows / Using cryptoki .. 13

2 Supported features ... 14

2.1 Unsupported functions .. 14

2.2 Supported functions & requirement specification .. 16

2.3 Supported mechanisms ... 36

3 Object template .. 38

3.1 Attribute ... 38

3.2 Object templates .. 42

3.3 Function specific templates ... 45

4 Differences to standard cryptoki specification ... 2

4.1 KeyGeneration ... 2

4.2 Import .. 2

5 Examples ... 1

5.1 Import private key and search associated public key .. 1

cgMiddleware

Version 1.0 05/31/2016 Seite 3 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

List of Figures
Figure 1: abstraction layer of cryptoki .. 6
Figure 2: session states .. 11
Figure 3: class hirarchy .. 40

List of Tables
Table 1: unsupported functions .. 15
Table 2: supported mechanisms ... 37
Table 3: RSA key import .. 2
Table 4: supported EC OIDs ... 2
Table 5: EC key import ... 3
Table 6: generate a keypair ... 1

file:///D:/cv-pkcs11/PKCS11%20Manual%20&%20Examples/cgMiddleware%20platform%20independant.docx%23_Toc453920101
file:///D:/cv-pkcs11/PKCS11%20Manual%20&%20Examples/cgMiddleware%20platform%20independant.docx%23_Toc453920103

cgMiddleware

Version 1.0 05/31/2016 Seite 4 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

0 About this Guide

This guide contains all the necessary information for application developers in order to use
certgate’s middleware with dedicated smartcards. It gives a basic instruction to PKCS11 and
lists all deviations from the cryptoki-standard which are necessary to support all certgate prod-
ucts with pre-installed smartcard applets (e.g. cgCard or cgToken). This guide is devided as fol-
lows:

Chapter 1.

First we introduce you with some basic knownledge of PKCS11 and its underlying class
layout

Chapter 2.

Then all PKCS11-functions supported by our middleware are listed. Each function im-
plements pre-defined requirements engineered in accordance with cryptoki-
specification. These are also listed identified by the following requirement syntax:

@CTXXX where X are numbers between 0-9.

e.g. @CT001: pInitArgs shall have value NULL or shall point to a structure of type
CK_C_INITIALIZE_ARGS.

Furthermore we show which cryptographic mechanisms are supported by our library.

Chapter 3.

Then function specific templates are given. Most of the functions communicating with
the smartcard handle those templates in order to e.g. generate a key-pair stored on the
card. A template combines several attributes where not all functions support all com-
binations. This chapter shows which attributes are mandatory and how they are com-
bined to build different use cases (e.g. object import or object generation).

Chapter 4.

Followed by showing the differences to standard cryptoki-specification. In order to
support all the features offered by the applet some deviations are necessary. In this
part of the documentation we give you information and reasons about those differ-
ences.

Chapter 5.

At the end of this guide basic examples shall strengthen the understading of PKCS11 /
the use of the middleware.

cgMiddleware

Version 1.0 05/31/2016 Seite 5 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

Who is this guide for?

For app developers who want to use native PKCS11 code to maintain smartcard-objects (key-
pairs, secret keys, certificates, storage objects) or use on-card-cryptography. PKCS11 can be
used platform independent (all systems which support c / c++). Our library is shipped platform
specific as e.g. .dll or .lib (with separate headers) and can be dynamically loaded into your pro-
gram. Loading the library is outside of scope of this documentation.

What typographical conventions are used?

Warning

Provides mandatory information which should always kept in mind

Note
Provides additional information on a topic, and emphasize important facts and considerations.

Tip
Inform about best practices and other recommendations.

Note
You should have some basic understanding about Public-Key cryptography, digital certifi-
cates, digital signature and Public Key Infrastructure (PKI) in order for you to understand the
discussed topics.

cgMiddleware

Version 1.0 05/31/2016 Seite 6 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

Figure 1: abstraction layer of cryptoki

1 Introduction to PKCS#11

PKCS#11 is the standardization of a platform independant API for cryptographic tokens – in
short “cryptoki” which stands for cryptographic token interface. Whenever we speak of crypto-
ki we use it as a synonym and mean the specification (see [CRTK04]) of the standard (other
documents often mean the API).

On a physical abstraction level the standard is located almost on the top of the layers. Figure 1
shows how cryptoki is integrated in our environment. The standard itself does not define what
kind of security token is used. Our implementation of cryptoki exclusively accesses smartcards
as shown in Figure 1.

Cryptoki has the goal to simplify the access of cryptographic hardware. Once developers have
integrated the API and use it within their applications they can switch the middleware to a dif-
ferent PKCS#11 implementation and use the dedicated security token without chaning any line
of code1.

Before we list our supported parts of cryptoki (see chapter 2) we first want you to get familiar
with some basic cryptoki principles. Developers who already got in contact with PKCS#11 can
go on with reading the next chapter but are also invited to read the introduction parts.

1 as far as both security tokens offer the same features and do not have distinct special behaviours

cgMiddleware

Version 1.0 05/31/2016 Seite 7 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

1.1 Basic principles of PKCS#11

We already learned that the cryptoki API can be universally used with different implementa-
tions for accessing different security tokens. In order to support this diversity some basics pro-
cesses and features need to be specified. Within this part we specify those principles and show
some of the most important workflows. Lets start with some basic notations.

1.1.1 Slot

Cryptoki supports multislot architecture where our implementation uses slots to identify
smartcard readers. More generalized a slot can be seen as a hardware element having a securi-
ty token inserted or not. Each slot has a unique ID which does not change as long as cryptoki is
once initialized.

The slot ID will never change during the runtime of your application. Other applications could
have different slot IDs - all IDs (not only slot IDs) are always context specific i.e. they are only
valid for your application!

Slot-Info

Each slot has its own slot-info containing some details like manufacturer information, slotname
and so on..

Slot-Events

As recently mentioned a slot will not always contain a token. As a matter of fact slots can be
tagged as non removable (you can find this information in the slot info) i.e. that the security to-
ken – e.g. a smartcard cannot be removed because its solderd into the smartcard reader. All
slots being tagged as removable should support slot-events. Slot-events give information about
the reader state i.e. for example that a smartcard was inserted or removed.

1.1.2 Token

A Token can be seen as the piece of hardware2 supporting the desired cryptographic features.
It’s bound to the Slot ID which means that there is no own instance and it has no ID itself.
Whenever you want to access the token you are just doing it virtually by accessing the Slot.
Since a token can be removed / inserted there is the opportunity to get detailed information
about it in order to e.g. avoid mix ups with other tokens.

Token-Info

Similar to the slot-info the token-info contains information about the manufacturer, model and
so on. Furthermore this structure contains information about the tokens serial (for us – the se-
rial number of the smartcard), available space, specific flags, etc. For us the flags are besides

2 in fact a token is not always hardware – there could be software token implementations as well, e.g. a cryptogra-

hic software keystore. Someone could also implement cryptoki in order to access those software elements.

cgMiddleware

Version 1.0 05/31/2016 Seite 8 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

the smart cards serial the most valuable information since they contain e.g. if the smartcard is
locked due to too many invalid PIN retries.

1.1.3 Mechanism

As we mentioned earlier tokens can be – if tagged so – removed from the slot and even re-
placed by another one. Supported cryptographic features may vary between the tokens since
applets can be easily replaced by offering new features. In a cryptoki specific context those
supported features are called mechanisms. Since we do not want to implement another
PKCS#11 for each released applet version cryptoki adds the support of dynamically reading the
supported mechanisms of the currently inserted token. Mechanisms are splitted in eight differ-
ent functionalities where we subclassed them to six different types

 Digests

o Digest

 Ciphers

o Encrypt / Decrypt,

o Wrap / Unwrap

 Signatures

o Sign / Verify

o Sign Recover / Verify Recover

 KeyGenerators

o Generate Key

 KeyPairGenerators

o Generate KeyPair

 KeyDerivers

o Derive

You can find our version-specific support of mechanisms in Table 2. A mechanism is identified
by a pre-defined PKCS#11 ID. A token supporting a specific mechanism can further be asked for
more details – called the mechanism-info.

Mechanism-Info

The mechanism-info gives information about the mechanism-class (in form of boolean values –
isEncrypt, isDecrypt, …) and the token-specific supported key- or digests output-sizes.

cgMiddleware

Version 1.0 05/31/2016 Seite 9 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

1.1.4 Session

In order to access the tokens objects or to actively use its mechanisms a session needs to be
opened. During a “normal” session – also known as public session – only temporary objects can
be created. They are existent as long as the session is not closed3 and are visible for all other
open sessions created for this token. The keyword “normal” already implies that there are sev-
eral session-states – so lets have a look at these and their limitations.

Session-state

The session-state limits the visibility of the token’s objects and manages its access rights e.g.
whether an object can be persistently written to the smartcard. We distinguish the following
states:

1. Public read mode

In public read mode we can create / destroy temporary public non token objects – also
called public session objects. Furthermore we can see all objects on the token which
are tagged as public.

2. Public read / write mode

In this mode we have the same features as in the previous mode. Furthermore we can
persistently write public objects to the card such as a certificate, a public data object or
a public key. We also can destroy those objects.

The applet installed on our smartcards supports the import of public keys BUT does not sup-
port internal calculations with them. This has the following reason:

Whenever a keypair (public / private key) is imported or generated the necessary information
for doing cryptographical calculations is completely stored within the private key record. A
public key record will be also written but this is just for completeness. On APDU level whether
doing a public (encrypt / verify) or a private (decrypt / sign) calculation always needs the pri-
vate key to be selected!

It is possible to store a single public key in a public key record BUT the applet will not be able to
use it to encrypt or verify data. In order to support those calculations for single public keys or
session objects (session objects are not stored on the token resulting in not being able to use
the cards cryptographic processing unit) we offer this in software.

3. User read mode

In this mode we have the same options as in the first mode. Furthermore we can read
the private objects stored on the token and access them for cryptographic operations.
Additionally we can create and destroy private session objects.

4. User read / write mode

In this mode we have the same options as in the previous mode. Furthermore we have
full access to create and destroy objects on the token. This mode is necessary to import
or generate keypairs, secret keys or private data objects

3 or the token is removed

cgMiddleware

Version 1.0 05/31/2016 Seite 10 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

5. SO mode

In this mode we have the same options as in the first mode. Furthermore we can set
(reset) the users PIN and install public root certificates (by tagging them with TRUSTED
– this is not supported yet). We do NOT have any access to private objects but can cre-
ate and destroy public token objects.

 In order to create a user read session, create a public read session and log in as user.

 In order to create a user read / write session, create a public read / write session and
log in as user.

 In order to create a SO session, create a public read / write session and log in as SO.

See Figure 2 for visualization.

The mix-up of sessions having different session states is very limited:

1. When a user session exists no SO session can be created and vice versa

2. As soon as a session switches to user mode all open sessions switch to user
mode

 When a SO session exists no user session can be established due to 1.

3. A SO session can not be created out of a read session

4. As soon as a session switches to SO mode all open sessions switch to SO mode.

 When a user session exists SO mode can NOT be established due to 1.

 When a read session exists (and even no user is logged in) SO mode can
NOT be established due to 3.

cgMiddleware

Version 1.0 05/31/2016 Seite 11 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

Figure 2: session states

Session objects

As we see objects stored on the token are accessible in different ways whereas session objects
can be always created / destroyed4.

A session object lives as long as its origin session stays alive and is accessible by all other ses-
sions accessing that slot5. Other slot specific sessions are also allowed to destroy a session ob-
ject even when they do not have created it!

During a public session only public session objects can be created / destroyed

During a user session public and private session objects can be created / destroyed

 private session objects are never visible for public sessions since only user
sessions can create private session objects and whenever a user is logged
in all open sessions are converted to user sessions and are no more public.

4 creating private session objects is still limited to user mode!
5 in an application specific context - other applications may have their own session objects but do not have any

access to foreign application specific created session objects.

cgMiddleware

Version 1.0 05/31/2016 Seite 12 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

1.1.5 Token Object

Contrary to session objects token objects are persistent and accessible to all applications6. Visi-
bility and access rights are described in 1.1.4 (Session state). According to one object’s type, ob-
jects are stored in different rom sections. We currently support to write the following types:

 Up to 32 private keys (RSA & EC)

 Up to 32 public keys (RSA & EC)

 Up to 255 certifcates7 (X509)

 Up to 255 data objects8

In order to create a token object the “Token”-flag needs to be set to “true”. For more infor-
mation see 3.1.4 (Token). Otherwise a session object is created. Lets have a look at the sup-
ported types.

Key

A key can either be a secret-, a private- or a public key. The latter one needs not to be stored
securely despite the others since their data is quite sensible. The smartcard’s storage is exclu-
sively separated for all these kind of keys where secret- and private keys are written to tamper
resistant memory i.e. once created they will never leave the card. Public keys are written to
simpler (and even cheaper) memory9.

In order to distinguish those types the attributes “ClassType” and “KeyType” shall necessarily
be written. For more information regarding these attributes see 3.1.4.

Certificate

Certificates are also stored in an own data section where we differ between trusted certificates
and normal ones. Currently we only support the import of normal ones10. Trusted certificates
have their own data section which is more secure than the normal rom storage.

Trusted certificates need a present “Trusted” attribute tagged with “true” where normal certif-
icates do not have that attribute or are tagged with “false”. This feature is not implemented
yet.

Data

Data objects can either be stored as private or public. Private data objects can only be written
or destroyed in user write sessions and just appear for user sessions. Public data objects are
always visible and destroyable during write sessions.

6 we previously learned that session objects are only valid in an application specifc context. When one application

creates a token object all other applications using cryptoki may need to close all sessions and open one session

again in order to detect a new token object.
7 the applet supports up to 255 certificate entries. Due to variable certificate lengths the amount of entries varies

and could be even less than this value.
8 the same as mentioned in 7 applies for data objects
9 in fact public keys are just written for completeness since they are also stored within the private key storage. See

1.1.4 Session state #2 for more information.
10 whenever we speak of certificates we mean x509 certificates

cgMiddleware

Version 1.0 05/31/2016 Seite 13 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

1.2 Workflows / Using cryptoki

So far we’ve learned some PKCS#11 basics and are ready to exercise some workflows. As we al-
ready know we need a user read / write session in order to write private objects and at least a
public read / write session to write public objects to the token. This small example tells us how
to initialize the library and create a user read / write session. More information about e.g. how
to gernerate or to import a keypair can be read in 3 and 5.

Before we can initialize the library we have to receive the PKCS#11 function addresses. This is
done by calling C_GetFunctionList using an instance of CK_FUNCTION_LIST_PTR as parame-
ter. After C_GetFunctionList returns successfully we can use the CK_FUNCTION_LIST_PTR for
calling the PKCS#11 defined functions.

First we have to initialize the library by using the CK_FUNCTION_LIST_PTR to call C_Initialize.
For this call we use NULL as parameter. The library then starts to communicate with the SCARD
interface (also known as PCSC-lite) and retrieves all available smartcard information from the
OS.

Now we have to call C_GetSlotList in order to get the available smartcard readers and their
IDs. We can use CK_TRUE as first parameter in order to receive all slots having a smartcard in-
serted.

After receiving a valid slot having a token / smartcard inserted we can use its ID to create a ses-
sion. For creating a session we call C_OpenSession having one previously received slotID and
CKF_SERIAL_SESSION | CKF_RW_SESSION as two of the five parameters.

For our implementation it is mandatory to call C_OpenSession with CKF_SERIAL_SESSION

Now we are ready to change the session state from public read write to user read write by call-
ing C_Login. Then we are ready for creating / destroying token objects or using the smartcards
crypto functionality like encrypt11.

We can revert all these steps by calling the following functions in the specified order:

 C_Logout to revert the user session back to a public session12

 C_CloseSession to destroy the session and all it’s origin session objects13

 C_Finalize when cryptoki is not used anymore

11 decrypt can even be called in public mode when using public key cryptography
12 created private session objects will be destroyed, private token objects are no longer accessible. Other slot / to-

ken specific private sessions are also downgraded to public sessions.
13 created token objects stay persistent

cgMiddleware

Version 1.0 05/31/2016 Seite 14 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

2 Supported features

In this chapter we focus on the supported features and functions implemented by our library.
For a proper implementation of cryptoki all of the standard’s specified functions have to be im-
plemented where function stubs are allowed. These stubs shall return with
CKR_FUNCTION_NOT_SUPPORTED. We first start with listing these functions followed by our re-
quirement specification for the ones which are implemented. At the end of this chapter we give
an overview about the mechanisms currently implemented.

2.1 Unsupported functions

The following functions return with CKR_FUNCTION_NOT_SUPPORTED as long as no other error
has higher priority (e.g. CK_CRYPTOKI_NOT_INITIALIZED).

Function Name Reason (optional) changed
in version

C_InitToken -

C_GetOperationState -

C_SetOperationState -

C_CopyObject secret and private keys can not be copied, copying certificates
and data objects is currently out of scope

-

C_EncryptUpdate stream ciphers are currently not supported, use C_Encrypt
instead (block cipher)

-

C_EncryptFinal stream ciphers are currently not supported, use C_Encrypt
instead (block cipher)

-

C_DecryptUpdate stream ciphers are currently not supported, use C_Decrypt
instead (block cipher)

-

C_DecryptFinal stream ciphers are currently not supported, use C_Decrypt
instead (block cipher)

-

C_DigestUpdate use C_Digest instead -

C_DigestKey would only apply for session objects since a secret or private
key can never leave the card again – out of scope

-

C_DigestFinal use C_Digest instead -

C_SignUpdate MACs are currently not supported, use C_Sign instead (block
cipher, sign / verify only cipher)

-

cgMiddleware

Version 1.0 05/31/2016 Seite 15 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

C_SignFinal MACs are currently not supported, use C_Sign instead (block
cipher, sign / verify only cipher)

-

C_SignRecoverInit -

C_SignRevocer -

C_VerifyUpdate MACs are currently not supported, use C_Verify instead (block
cipher, sign / verify only cipher)

-

C_VerifyFinal MACs are currently not supported, use C_Verify instead (block
cipher, sign / verify only cipher)

-

C_VerifyRecoverInit -

C_VerifyRecover -

C_DecryptEncryptUpdate -

C_DecryptDigestUpdate -

C_SignEncryptUpdate -

C_DecryptVerifyUpdate -

C_GenerateKey secret keys are currently not supported -

C_WrapKey would only apply for session objects since a secret or private
key can never leave the card again – out of scope

-

C_UnwrapKey -

C_DeriveKey -

C_SeedRandom the hardware random number generator does not support
seeding

-

C_GetFunctionStatus -

C_CancelFunction -

PKCS#11 function call-
back

 -

Table 1: unsupported functions

cgMiddleware

Version 1.0 05/31/2016 Seite 16 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

2.2 Supported functions & requirement specification

For quality purposes we analysed cryptoki and engineered requirements in accordance with the
specification. Each requirement has an unique ID which was used for tagging our code wherev-
er the requirement fulfilled cryptoki’s needs. This allows us to track all implemented features
and easyli maintain our code. The syntax of the IDs is as follows:

@CTXXX, where X is a number between 0-9

Green fields mean the requirement is completely implemented.

Red fields mean the requirement is not implemented.

Orange fields mean the requirement is partially implemented.

Not all functions have requirements specified.

2.2.1 C_Initialize

The function supports additional return values of:

 CKR_GENERAL_ERROR

req id requirement description
changed
in version

CT001
pInitArgs shall have value NULL or shall point to a structure of type
CK_C_INITIALIZE_ARGS

-

CT002 pInitArgs shall be casted to a CK_C_INITIALIZE_ARGS_PTR when value is != NULL -

CT003 pInitArgs->pReserved shall be NULL when pInitArgs has a value != NULL -

CT004
when pInitArgs->pReserved and pInitArgs are both != NULL function shall return
with CKR_ARGUMENTS_BAD

-

CT005

when CKF_LIBRARY_CANT_CREATE_OS_THREADS flag is set and application
expects P11 lib beeing capable of multithreading function shall return
CKR_NEED_TO_CREATE_THREADS

-

CT006

when CKF_OS_LOCKING_OK is not set and fields CreateMutex, DestroyMutex,
LockMutex and UnlockMutex have value NULL P11 lib shall not use any multi-
threading

-

CT007

when CKF_OS_LOCKING_OK is set and fields CreateMutex, DestroyMutex,
LockMutex and UnlockMutex have value NULL P11 lib shall use OS primitives to
ensure multithreaded safety

-

CT008

when CKF_OS_LOCKING_OK is not set and fields CreateMutex, DestroyMutex,
LockMutex and UnlockMutex have value != NULL P11 lib shall use these func-
tion pointers to ensure mutithreaded safety

-

CT009

when CKF_OS_LOCKING_OK is set and fields CreateMutex, DestroyMutex,
LockMutex and UnlockMutex have value != NULL P11 lib shall use either OS
primitives or these function pointers to ensure multithreaded safety

-

CT010
when P11 lib is unable to ensure desired safe multithreaded access level func-
tion shall return CKR_CANT_LOCK

-

cgMiddleware

Version 1.0 05/31/2016 Seite 17 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

CT011
when CreateMutex, DestroyMutex, LockMutex and UnlockMutex partially have
values != NULL function shall return CKR_ARGUMENTS_BAD

-

CT012
when pInitArgs is NULL function shall behave like CreateMutex, DestroyMutex,
LockMutex, UnlockMutex, pReserved having value NULL and no flag being set

-

CT013
when function is called again and previously returned CKR_OK to the same ap-
plication CKR_CRYPTOKI_ALREADY_INITIALIZED shall be returned

-

CT999 the function shall clear all currently available slots event states -

2.2.2 C_Finalize

The function supports additional return values of:

 CKR_GENERAL_ERROR

req id requirement description
changed
in version

CT014
when pReserved parameter has value != NULL function shall return
CKR_ARGUMENTS_BAD

-

CT015
when function is called without a preceding call of C_Initialize function shall
return CKR_CRYPTOKI_NOT_INITIALIZED

-

CT016
when function is called all potentially waiting threads (which may called
C_WaitForSlotEvent with enabled blocking) shall be unlocked

-

2.2.3 C_GetInfo

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_GENERAL_ERROR

 CKR_ARGUMENTS_BAD

2.2.4 C_GetFunctionList

The function supports additional return values of:

 CKR_GENERAL_ERROR

 CKR_ARGUMENTS_BAD

req id requirement description
changed
in version

CT017
ppFunctionList shall receive the P11s references to the implemented api func-
tions

-

2.2.5 C_GetSlotList

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

cgMiddleware

Version 1.0 05/31/2016 Seite 18 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

 CKR_GENERAL_ERROR

 CKR_ARGUMENTS_BAD

req id requirement description
changed
in version

CT018
when pSlotList is NULL function shall set the number of current slots to out
parameter pulCount and return with CKR_OK

-

CT019

when pSlotList is != NULL function shall return CKR_CKR_BUFFER_TO_SMALL
when in parameter pulCount indicates that the out parameter pSlotList is not
capable of storing all current slots and write the neccessary size to pulCount

-

CT020

when pSlotList is != NULL function shall insert all currently available slots to out
parameter pSlotList, write the size to out parameter pulCount and return with
CKR_OK

-

CT021
when tokenPresent is set to CK_TRUE function shall only return / count current-
ly available slots that have a token present

-

CT022

unless function is called again with pSlotList = NULL all formerly reported slots
shall be seen as valid slots (newly added slots are only accessible after calling
this function with pSlotList = NULL again, slots which have been removed shall
be still seen as valid as long as this function is called with pSlotList = NULL again)

-

2.2.6 C_GetSlotInfo

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_GENERAL_ERROR

 CKR_SLOT_ID_INVALID

 CKR_ARGUMENTS_BAD

2.2.7 C_GetTokenInfo

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_GENERAL_ERROR

 CKR_SLOT_ID_INVALID

 CKR_TOKEN_NOT_PRESENT

 CKR_ARGUMENTS_BAD

2.2.8 C_WaitForSlotEvent

The function supports additional return values of:

 CKR_GENERAL_ERROR

cgMiddleware

Version 1.0 05/31/2016 Seite 19 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

req id requirement description
changed
in version

CT023
when pReserved has a value != NULL function shall return with
CKR_ARGUMENTS_BAD

-

CT024

when in parameter flag is set with CKF_DONT_BLOCK then the function shall set
the ID of the reader where the most current event occured to the out parame-
ter pSlot and return with CKR_OK

-

CT025
when in parameter flag is set with CKF_DONT_BLOCK and there are no pending
events the function shall return with CKR_NO_EVENT

-

CT026
when in parameter flag has not set CKF_DONT_BLOCK the function shall wait
until an event occurs

-

CT027
when the function is in waiting state and C_Finalize is called the function shall
stop waiting for an event and return with CKR_CRYPTOKI_NOT_INITIALIZED

-

CT028
each currently accessable slot shall have an internal event flag which is set as
soon as an event occurs

-

CT029
this function shall clear a slot’s event state whenever it reports the slot’s ID to
the caller

-

CT030 this function shall react on token insertion event -

CT031 this function shall react on token removal events -

2.2.9 C_GetMechanismList

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_GENERAL_ERROR

 CKR_SLOT_ID_INVALID

 CKR_TOKEN_NOT_PRESENT

 CKR_ARGUMENTS_BAD

req id requirement description
changed
in version

CT032
when pMechanismList is = NULL the function shall set the amount of the tokens
supported mechanisms to pulCount out parameter and return with CKR_OK

-

CT033

when pMechanismList is != NULL function shall return
CKR_CKR_BUFFER_TO_SMALL when in parameter pulCount indicates that the
out parameter pMechanismList is not capable of storing all mechanisms sup-
ported by the token and write the neccessary size to pulCount

-

CT034

when pMechanismList is != NULL function shall insert all of the tokens support-
ed mechanisms to out parameter pMechanismList and write its size to out pa-
rameter pulCount returning with CKR_OK

-

cgMiddleware

Version 1.0 05/31/2016 Seite 20 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

2.2.10 C_GetMechanismInfo

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_GENERAL_ERROR

 CKR_MECHANISM_INVALID

 CKR_SLOT_ID_INVALID

 CKR_TOKEN_NOT_PRESENT

 CKR_ARGUMENTS_BAD

2.2.11 C_InitPin

The function supports additional return values of:

 CKR_ CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_GENERAL_ERROR

 CKR_SESSION_CLOSED

 CKR_SESSION_HANDLE_INVALID

 CKR_ARGUMENTS_BAD

req id requirement description
changed
in version

CT035 the function shall initialize a normal users PIN -

CT036
whenever the function is called not being in R/W SO Session state it shall return
CKR_USER_NOT_LOGGED_IN

-

CT037
when the token has CKF_PROTECTED_AUTHENTICATION_PATH flag set parame-
ter pPin shall have value = NULL

-

2.2.12 C_SetPin

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_GENERAL_ERROR

 CKR_PIN_INCORRECT

 CKR_SESSION_CLOSED

 CKR_SESSION_HANDLE_INVALID

cgMiddleware

Version 1.0 05/31/2016 Seite 21 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

 CKR_ARGUMENTS_BAD

req id requirement description
changed
in version

CT038 the function shall set the PIN of the currently logged in user -

CT039
when no user is logged in at the moment and session is in R/W Public Session
state the user PIN shall be set

-

CT040
whenever the function is called not being in a write state it shall return
CKR_SESSION_READ_ONLY

-

CT041
when the token has CKF_PROTECTED_AUTHENTICATION_PATH flag set in pa-
rameters pOldPin and pNewPin shall have value = NULL

-

2.2.13 C_OpenSession

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_FUNCTION_FAILED

 CKR_GENERAL_ERROR

 CKR_SLOT_ID_INVALID

 CKR_TOKEN_NOT_PRESENT

 CKR_ARGUMENTS_BAD

req id requirement description
changed
in version

CT042

whenever the function is called without CKF_SERIAL_SESSION being set in flags
input parameter the function shall return with
CKR_SESSION_PARALLEL_NOT_SUPPORTED

-

CT043
whenever the function is called and the maximum amount of sessions is
reached (token dependant) the function shall return with CKR_SESSION_COUNT

-

CT044
whenever a R/W SO Session is already open and a R Session is requested the
function shall return with CKR_SESSION_READ_WRITE_SO_EXISTS

-

2.2.14 C_CloseSession

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_ DEVICE_REMOVED

 CKR_ FUNCTION_FAILED

 CKR_GENERAL_ERROR

 CKR_SESSION_CLOSED

 CKR_SESSION_HANDLE_INVALID

cgMiddleware

Version 1.0 05/31/2016 Seite 22 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

req id requirement description
changed
in version

CT045
all objects created during the session indicated by hSession shall be destroyed
even when they are still be used by other sessions

-

2.2.15 C_CloseAllSessions

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_ FUNCTION_FAILED

 CKR_ GENERAL_ERROR

 CKR_SESSION_CLOSED

 CKR_SESSION_HANDLE_INVALID

 CKR_ARGUMENTS_BAD

req id requirement description
changed
in version

CT199
whenever the function is called all sessions opened for the slot indicated in
slotID shall be closed

-

CT200
whenever the function is called all session objects created for that slot shall be
destroyed

-

CT201
on successful call of this function the login state shall return to public i.e. po-
tential new sessions are created in public state

-

2.2.16 C_GetSessionInfo

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_ FUNCTION_FAILED

 CKR_ GENERAL_ERROR

 CKR_SESSION_CLOSED

 CKR_SESSION_HANDLE_INVALID

 CKR_ARGUMENTS_BAD

cgMiddleware

Version 1.0 05/31/2016 Seite 23 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

2.2.17 C_Login

The function supports additional return values of:

 CKR_ARGUMENTS_BAD

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_FUNCTION_FAILED

 CKR_GENERAL_ERROR

 CKR_PIN_LOCKED

 CKR_SESSION_CLOSED

 CKR_SESSION_HANDLE_INVALID

 CKR_USER_ALREADY_LOGGED_IN

 CKR_USER_ANOTHER_ALREADY_LOGGED_IN

 CKR_USER_TYPE_INVALID

req id requirement description
changed
in version

CT046
on successful login all existing sessions shall be upgraded from public sessions
to private sessions (user specific)

-

CT047
when trying to login with CKR_CONTEXT_SPECIFIC the function shall return
CKR_OPERATION_NOT_INITIALIZED on improper use

-

CT048
when trying to login the SO and there is a read only session the function shall
return CKR_SESSION_READ_ONLY_EXISTS

-

CT049
when CKF_PROTECTED_AUTHENTICATION_PATH flag is set the input parameter
pPin shall be NULL

-

CT050 on successful login the function shall return with CKR_OK -

CT051
the function shall return with CKR_PIN_INCORRECT when access can not be
granted

-

CT052
logging in shall only succeed when no active operation is ongoing (no crypto
operation, no object finding operations, ...)

-

CT053
the function shall only be called once unless a logout occurs or a key is post-
accessed flagged with CKA_ALWAYS_AUTHENTICATE

-

2.2.18 C_Logout

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_FUNCTION_FAILED

 CKR_GENERAL_ERROR

 CKR_SESSION_CLOSED

cgMiddleware

Version 1.0 05/31/2016 Seite 24 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

 CKR_SESSION_HANDLE_INVALID

 CKR_USER_NOT_LOGGED_IN

req id requirement description
changed
in version

CT054
on successful logout all existing sessions shall be downgraded from private ses-
sions to public sessions (user specific)

-

CT055 on successful logout all private object handles shall be invalid even on re-login -

CT056 on successful logout all privatly created non-token objects shall be destroyed -

CT057
logging out shall only succeed when no active operation is ongoing (no crypto
operation, no object finding operations, ...)

-

2.2.19 C_CreateObject

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_FUNCTION_FAILED

 CKR_GENERAL_ERROR

 CKR_SESSION_CLOSED

 CKR_SESSION_HANDLE_INVALID

 CKR_USER_NOT_LOGGED_IN

req id requirement description
changed
in version

CT058
whenever a template is unsupported the function shall return without creating
an object

-

CT059
when creating key-objects the CKA_LOCAL attribute shall be set to CK_FALSE
(create object is always an import -> not generated by token)

-

CT060
when creating private- or secret-key objects the CKA_ALWAYS_SENSITIVE at-
tribute shall be set to CK_FALSE

-

CT061
when creating private- or secret-key objects the CKA_NEVER_EXTRACTABLE
attribute shall be set to CK_FALSE

-

CT062 during a read only session only session objects shall be createable -

CT063 during a public session only public objects shall be createable -

2.2.20 C_DestroyObject

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_FUNCTION_FAILED

cgMiddleware

Version 1.0 05/31/2016 Seite 25 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

 CKR_GENERAL_ERROR

 CKR_OBJECT_HANDLE_INVALID

 CKR_SESSION_CLOSED

 CKR_SESSION_HANDLE_INVALID

 CKR_SESSION_READ_ONLY

req id requirement description
changed
in version

CT069 during a read only session only session objects shall be destroyed -

CT070 during a public session only public objects shall be destroyed -

2.2.21 C_GetObjectSize

The function supports additional return values of:

 CKR_ARGUMENTS_BAD

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_FUNCTION_FAILED

 CKR_GENERAL_ERROR

 CKR_OBJECT_HANDLE_INVALID

 CKR_SESSION_CLOSED

 CKR_SESSION_HANDLE_INVALID

2.2.22 C_GetAttributeValue

The function supports additional return values of:

 CKR_ARGUMENTS_BAD

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_FUNCTION_FAILED

 CKR_GENERAL_ERROR

 CKR_OBJECT_HANDLE_INVALID

 CKR_SESSION_HANDLE_INVALID

req id requirement description
changed
in version

CT071
in / out parameter pTemplate shall point to attributes described by type, value
and length

-

cgMiddleware

Version 1.0 05/31/2016 Seite 26 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

CT072

when an objects is flagged as SENSITIVE or UNEXTRACTABLE the attributes out
length shall be set to -1 and return value shall be set to
CKR_ATTRIBUTE_SENSITIVE

-

CT073

when an object does not contain the specified attribute the attributes out
length shall be set to -1 and return value shall be set to
CKR_ATTRIBUTE_INVALID

-

CT074
when an objects attribute is extractable but the attributes in parameter value is
NULL then the exact length shall be set to the attributes out length

-

CT075

when an objects attribute is extractable and the attributes out value field is
large enough (indicated by length) the value shall be copied to out value and
the exact length value shall be written to out length

-

CT076

when an objects attribute is extractable and the attributes out value field is not
large enough the attributes out length shall be set to -1 and return value shall
be set to CKR_BUFFER_TO_SMALL

-

CT077
whenever the return value is modified the function shall go on with the next
attribute

-

CT078

whenever an objects attribute is flagged with CKF_ARRAY_ATTRIBUTE and con-
sists of attributes (an attribute contains an array of attributes) the function shall
treat each attribute like specified (CT072-CT077)

-

2.2.23 C_SetAttributeValue

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_ATTRIBUTE_READ_ONLY

 CKR_DEVICE_REMOVED

 CKR_FUNCTION_FAILED

 CKR_GENERAL_ERROR

 CKR_OBJECT_HANDLE_INVALID

 CKR_SESSION_CLOSED

 CKR_SESSION_HANDLE_INVALID

 CKR_SESSION_READ_ONLY

 CKR_USER_NOT_LOGGED_IN

 CKR_ARGUMENTS_BAD

req id requirement description
changed
in version

CT079 during a read only session only session objects shall be modified -

CT080

whenever the template includes attributes which are not compatible with the
object or existing attributes the function shall return with
CKR_TEMPLATE_INCONSISTENT

-

cgMiddleware

Version 1.0 05/31/2016 Seite 27 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

2.2.24 C_FindObjectsInit

The function supports additional return values of:

 CKR_ARGUMENTS_BAD

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_FUNCTION_FAILED

 CKR_GENERAL_ERROR

 CKR_OPERATION_ACTIVE

 CKR_SESSION_CLOSED

 CKR_SESSION_HANDLE_INVALID

req id requirement description
changed
in version

CT081 when in parameter ulCount has value 0 all objects shall be "found" -

CT082
objects shall be found in a session specific manner (public session -> only public
objects)

-

2.2.25 C_FindObjects

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_FUNCTION_FAILED

 CKR_GENERAL_ERROR

 CKR_OPERATION_NOT_INITIALIZED

 CKR_SESSION_CLOSED

 CKR_SESSION_HANDLE_INVALID

 CKR_ARGUMENTS_BAD

req id requirement description
changed
in version

CT083 the function shall compare the search patterns bytewise -

CT084 object finding shall be initialized with preceding call of C_FindObjectsInit -

CT085

when there are no more objects to find pulObjectCount parameter shall receive
value 0 - when objects where found pulObjectCount shall receive the amount of
found objects

-

cgMiddleware

Version 1.0 05/31/2016 Seite 28 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

2.2.26 C_FindObjectsFinal

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_FUNCTION_FAILED

 CKR_GENERAL_ERROR

 CKR_OPERATION_NOT_INITIALIZED

 CKR_SESSION_CLOSED

 CKR_SESSION_HANDLE_INVALID

req id requirement description
changed
in version

CT086 function shall finalize objects search in order to start a potentially new one -

2.2.27 C_EncryptInit

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_FUNCTION_FAILED

 CKR_GENERAL_ERROR

 CKR_KEY_FUNCTION_NOT_PERMITTED

 CKR_KEY_HANDLE_INVALID

 CKR_KEY_TYPE_INCONSISTENT

 CKR_MECHANISM_INVALID

 CKR_OPERATION_ACTIVE

 CKR_SESSION_CLOSED

 CKR_SESSION_HANDLE_INVALID

 CKR_USER_NOT_LOGGED_IN

req id requirement description
changed
in version

CT087
in parameter hKey, being used as encryption key, shall have a valid (CK_TRUE)
CKA_ENCRYPT attribute

-

cgMiddleware

Version 1.0 05/31/2016 Seite 29 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

2.2.28 C_Encrypt

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_FUNCTION_FAILED

 CKR_GENERAL_ERROR

 CKR_OPERATION_NOT_INITIALIZED

 CKR_SESSION_CLOSED

 CKR_SESSION_HANDLE_INVALID

 CKR_ARGUMENTS_BAD

req id requirement description
changed
in version

CT088

when out parameter pEncryptedData is NULL the function shall set parameter
pulEncryptedDataLen to the number of bytes which would suffice to hold the
output and return with CKR_OK

-

CT089

when out parameter pEncryptedData is != NULL and pulEncrypedDataLen indi-
cates that the buffer is large enough to hold the output the function shall copy
the output to pEncryptedData, set the exact size to pulEncryptedDataLen and
return with CKR_OK

-

CT090

when out parameter pEncryptedData is != NULL and pulEncrypedDataLen indi-
cates that the buffer is NOT large enough to hold the output the function shall
set the exact size of the output to pulEncryptedDataLen and return with
CKR_BUFFER_TO_SMALL

-

CT091
the function shall be precalled by C_EncryptInit in order to initialize an encryp-
tion process

-

CT092
the function shall always terminate an encryption process except it returns with
CKR_BUFFER_TO_SMALL or was just used for a length call (CT088)

-

CT093
the function shall only support single-part-operations and cannot be called to
finish multi-part-operations

-

CT094
when mechanism specific input length constraints are not satisfied the function
shall return with CKR_DATA_LEN_RANGE

2.2.29 C_DecryptInit

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_FUNCTION_FAILED

 CKR_GENERAL_ERROR

 CKR_KEY_FUNCTION_NOT_PERMITTED

cgMiddleware

Version 1.0 05/31/2016 Seite 30 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

 CKR_KEY_HANDLE_INVALID

 CKR_KEY_TYPE_INCONSISTENT

 CKR_MECHANISM_INVALID

 CKR_OPERATION_ACTIVE

 CKR_SESSION_CLOSED

 CKR_SESSION_HANDLE_INVALID

 CKR_USER_NOT_LOGGED_IN

 CKR_ARGUMENTS_BAD

req id requirement description
changed
in version

CT106
in parameter hKey, being used as decryption key, shall have a valid (CK_TRUE)
CKA_DECRYPT attribute

-

2.2.30 C_Decrypt

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_FUNCTION_FAILED

 CKR_GENERAL_ERROR

 CKR_OPERATION_NOT_INITIALIZED

 CKR_SESSION_CLOSED

 CKR_SESSION_HANDLE_INVALID

 CKR_USER_NOT_LOGGED_IN

 CKR_ARGUMENTS_BAD

req id requirement description
changed
in version

CT107

when out parameter pData is NULL the function shall set parameter pulDataLen
to the number of bytes which would suffice to hold the output and return with
CKR_OK

-

CT108

when out parameter pData is != NULL and pulDataLen indicates that the buffer
is large enough to hold the output the function shall copy the output to pData
set the exact size to pulDataLen and return with CKR_OK

-

CT109

when out parameter pData is != NULL and pulDataLen indicates that the buffer
is NOT large enough to hold the output the function shall set the exact size of
the output to pulDataLen and return with CKR_BUFFER_TO_SMALL

-

CT110
the function shall be precalled by C_DecryptInit in order to initialize an decryp-
tion process

-

cgMiddleware

Version 1.0 05/31/2016 Seite 31 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

CT111
the function shall always terminate an decryption process except it returns with
CKR_BUFFER_TO_SMALL or was just used for a length call (CT107)

-

CT112
the function shall only support single-part-operations and cannot be called to
finish multi-part-operations

-

CT113

when the ciphertext cannot be decrypted because it has inappropriate length
the function shall either return CKR_ENCRYPTED_DATA_INVALID or
CKR_ENCRYPTED_DATA_LEN_RANGE

-

2.2.31 C_DigestInit

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_FUNCTION_FAILED

 CKR_GENERAL_ERROR

 CKR_MECHANISM_INVALID

 CKR_OPERATION_ACTIVE

 CKR_SESSION_CLOSED

 CKR_SESSION_HANDLE_INVALID

 CKR_ARGUMENTS_BA

2.2.32 C_Digest

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_FUNCTION_FAILED

 CKR_GENERAL_ERROR

 CKR_OPERATION_NOT_INITIALIZED

 CKR_SESSION_CLOSED

 CKR_SESSION_HANDLE_INVALID

 CKR_ARGUMENTS_BAD

req id requirement description
changed
in version

CT125

when out parameter pDigest is NULL the function shall set parameter pulDi-
gestLen to the number of bytes which would suffice to hold the output and
return with CKR_OK

-

CT126 when out parameter pDigest is != NULL and pulDigestLen indicates that the -

cgMiddleware

Version 1.0 05/31/2016 Seite 32 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

buffer is large enough to hold the output the function shall copy the output to
pDigest set the exact size to pulDigestLen and return with CKR_OK

CT127

when out parameter pDigest is != NULL and pulDigestLen indicates that the
buffer is NOT large enough to hold the output the function shall set the exact
size of the output to pulDigestLen and return with CKR_BUFFER_TO_SMALL

-

CT128
the function shall be precalled by C_DigestInit in order to initialize a hash pro-
cess

-

CT129
the function shall always terminate a hash process except it returns with
CKR_BUFFER_TO_SMALL or was just used for a length call (CT125)

-

CT130
the function shall only support single-part-operations and cannot be called to
finish multi-part-operations

-

2.2.33 C_SignInit

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_FUNCTION_FAILED

 CKR_GENERAL_ERROR

 CKR_KEY_FUNCTION_NOT_PERMITTED

 CKR_KEY_HANDLE_INVALID

 CKR_KEY_TYPE_INCONSISTENT

 CKR_MECHANISM_INVALID

 CKR_OPERATION_ACTIVE

 CKR_SESSION_CLOSED

 CKR_SESSION_HANDLE_INVALID

 CKR_USER_NOT_LOGGED_IN

req id requirement description
changed
in version

CT138
in parameter hKey, being used as signing key, shall have a valid (CK_TRUE)
CKA_SIGN attribute

-

2.2.34 C_Sign

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_FUNCTION_FAILED

 CKR_GENERAL_ERROR

cgMiddleware

Version 1.0 05/31/2016 Seite 33 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

 CKR_OPERATION_NOT_INITIALIZED

 CKR_SESSION_CLOSED

 CKR_SESSION_HANDLE_INVALID

 CKR_USER_NOT_LOGGED_IN

 CKR_ARGUMENTS_BAD

req id requirement description
changed
in version

CT139

when out parameter pSignature is NULL the function shall set parameter
pulDataLen to the number of bytes which would suffice to hold the output and
return with CKR_OK

-

CT140

when out parameter pSignature is != NULL and pulSignatureLen indicates that
the buffer is large enough to hold the output the function shall copy the output
to pSignature set the exact size to pulSignatureLen and return with CKR_OK

-

CT141

when out parameter pSignature is != NULL and pulSignatureLen indicates that
the buffer is NOT large enough to hold the output the function shall set the
exact size of the output to pulSignatureLen and return with
CKR_BUFFER_TO_SMALL

-

CT142
the function shall be precalled by C_SignInit in order to initialize an decryption
process

-

CT143
the function shall always terminate a signing process except it returns with
CKR_BUFFER_TO_SMALL or was just used for a length call (CT139)

-

CT144
the function shall only support single-part-operations and cannot be called to
finish multi-part-operations

-

2.2.35 C_VerifyInit

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_FUNCTION_FAILED

 CKR_GENERAL_ERROR

 CKR_KEY_FUNCTION_NOT_PERMITTED

 CKR_KEY_HANDLE_INVALID

 CKR_KEY_TYPE_INCONSISTENT

 CKR_MECHANISM_INVALID

 CKR_OPERATION_ACTIVE

 CKR_SESSION_CLOSED

 CKR_SESSION_HANDLE_INVALID

 CKR_ARGUMENTS_BAD

cgMiddleware

Version 1.0 05/31/2016 Seite 34 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

req id requirement description
changed
in version

CT152
in parameter hKey, being used as verifying key, shall have a valid (CK_TRUE)
CKA_VERIFY attribute

-

2.2.36 C_Verify

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_FUNCTION_FAILED

 CKR_GENERAL_ERROR

 CKR_OPERATION_NOT_INITIALIZED

 CKR_SESSION_CLOSED

 CKR_SESSION_HANDLE_INVALID

 CKR_ARGUMENTS_BAD

req id requirement description
changed
in version

CT153
the function shall be precalled by C_VerifyInit in order to initialize a verification
process

-

CT154 the function shall always terminate a verification process -

CT155
the function shall only support single-part-operations and cannot be called to
finish multi-part-operations

-

CT156
whenever a signature can be seen as invalid purely on the basis of its length the
function shall return CKR_SIGNATURE_LEN_RANGE

-

CT157
whenever a signature is invalid (verification fails) the funtion shall return
CKR_SIGNATURE_INVALID

-

CT158 whenever a signature is valid the function shall return with CKR_OK -

2.2.37 C_GenerateKeyPair

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_FUNCTION_FAILED

 CKR_GENERAL_ERROR

 CKR_MECHANISM_INVALID

 CKR_OPERATION_ACTIVE

 CKR_SESSION_CLOSED

cgMiddleware

Version 1.0 05/31/2016 Seite 35 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

 CKR_SESSION_HANDLE_INVALID

 CKR_SESSION_READ_ONLY

 CKR_TEMPLATE_INCOMPLETE

 CKR_USER_NOT_LOGGED_IN

 CKR_ARGUMENTS_BAD

req id requirement description
changed
in version

CT173 the function shall be able to generate two new objects on a token -

CT174 the function shall never generate a single public or private key -

CT175
whenever the function succeeds it shall always generate a public AND a private
key

-

CT176
the function shall read the type of the objects being created from in parameter
pMechanism carried in the CKA_KEY_TYPE attribute

-

CT177

whenever one of the in parameter templates supplies a CKA_KEY_TYPE attrib-
ute other than specified in CKA_KEY_TYPE attribute of in parameter pMecha-
nism the function shall return with CKR_TEMPLATE_INCONSISTENT

-

CT178

whenever one of the in parameter templates supplies a CKA_CLASS attribute
other than specified in CKA_CLASS attribute of in parameter pMechanism the
function shall return with CKR_TEMPLATE_INCONSISTENT

-

CT179
whenever one of the in parameter templates is not supported the function shall
fail and do not create any object

-

CT180
objects created by this function shall always receive the CKA_LOCAL attribute
with a value of CK_TRUE

-

2.2.38 C_GenerateRandom

The function supports additional return values of:

 CKR_CRYPTOKI_NOT_INITIALIZED

 CKR_DEVICE_REMOVED

 CKR_FUNCTION_FAILED

 CKR_GENERAL_ERROR

 CKR_OPERATION_ACTIVE

 CKR_SESSION_CLOSED

 CKR_SESSION_HANDLE_INVALID

 CKR_ARGUMENTS_BAD

cgMiddleware

Version 1.0 05/31/2016 Seite 36 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

2.3 Supported mechanisms

Currently we support the mechanisms listed in Table 2.

Some mechanisms are completely in hardware – some others use software for public key cryp-
tography. Private key operations are always in hardware.

Hardware-only operations such as key generation are not supported for session objects!

Mechanism
Type

Mechanism Supported
Sizes

Hardware / Software since
Version

Cipher, Signa-
ture

CKM_RSA_PKCS KeySizes:

512 – 2048

Token objects:

private key operations in hardware,
public key operations in software

Session objects:

software

1.0

Signature CKM_ECDSA_SHA1

supported curves:

see KeyPairGen

CKM_EC_KEY_PAIR_GEN

KeySizes:

160 – 320

Token objects:

private key operations in hardware,
public key operations in software

Session objects:

software

1.0

Signature CKM_SHA1_RSA_PKCS KeySizes:

512 – 2048

Token objects:

private key operations in hardware,
public key operations in software

Session objects:

Software

1.0

Signature CKM_SHA256_RSA_PKCS KeySizes:

512 – 2048

Token objects:

private key operations in hardware,
public key operations in software

Session objects:

Software

1.0

Signature CKM_SHA512_RSA_PKCS KeySizes:

768 – 2048

Token objects:

private key operations in hardware,
public key operations in software

Session objects:

software

1.0

KeyPairGen CKM_RSA_PKCS_KEY_PAIR_GEN 512 – 2048 hardware 1.0

KeyPairGen CKM_EC_KEY_PAIR_GEN

supported curves:

160 – 320 hardware 1.0

cgMiddleware

Version 1.0 05/31/2016 Seite 37 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

brainpoolP160r1

brainpoolP192r1

brainpoolP224r1

brainpoolP256r1

brainpoolP320r1

ansi-x962 prime192v1

ansip224r1

ansi-x962 prime256v1

Digest CKM_MD5 - software 1.0

Digest CKM_SHA_1 - software 1.0

Table 2: supported mechanisms

cgMiddleware

Version 1.0 05/31/2016 Seite 38 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

3 Object template

This chapter gives an overview about CK_ATTRIBUTES and their usage. PKCS#11 objects consist
of those attributes while some of the latter are quite important. For example the “token”-
attribute decides whether an object is a token object or just a session object which only lives
temporary during the active session. This chapter starts with giving detailed information of
those attributes followed by an explaination how to use the attributes on different functions.

3.1 Attribute

As we already learned PKCS#11 objects consists of attributes where some of them are very im-
portant because they determine how the objects is stored, handled, … . Therefore we distin-
guish the following attribute classes:

 global mandatory attributes

 object specific attributes

 optional object specific attributes

The first category of attributes are necessary for all objects where the resting two depend on
the purpose. Before we start with having a deeper look on attributes we will discuss how one of
it is composed.

3.1.1 Structure of an attribue

An attribute consists of the following three parts

 The type of the attribute

PKCS#11 specifies pre-defined constants identifying the attribute or more precisely the
value, i. e. the type gives information about how the content of the value can be inter-
preted.

 The value of the attribute

the value contains the intended data

 The length of the attribute

the amount of bytes necessary to store the value

3.1.2 Construction of an object

Now as we now how attributes are structured we can exemplary construct a PKCS#11 object.

For example a RSA public key is described by the public exponent and its modulus. For con-
structing such an object in PKCS#11 we would need the gobal mandatory attributes and the key
specific attributes like CKA_PUBLIC_EXPONENT and CKA_MODULUS. The public exponent attribute
would may look like the following:

cgMiddleware

Version 1.0 05/31/2016 Seite 39 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

TYPE -> CKA_PUBLIC_EXPONENT

VALUE -> 010001

LENGTH -> 3

An optional attribute would be CKA_MODULUS_BITS since it gives extra information about the
size of the modulus but isn’t needed because this information could be derived from the modu-
lus itsself. PKCS#11 defines all possible constructions of objects which really would go beyond
the scope of this document for listing all of them here. For this reason we just concentrate on
the base types and will discuss only the ones we really need in order to support our mecha-
nisms. So lets start with the base types before we go on with defining the global mandatory at-
tributes contained in every object.

3.1.3 PKCS#11 base objects

The PKCS#11 base objects follow the hirarchy depicted in Figure 3. There are three base objects
we need for our ongoing investigations:

 Data objects

 Key objects

 Certificate objects

Each kind of object has its own set of possible attributes where base class attributes are addi-
tionally inherited. For example the Data base class consists of the following attributes:

 CKA_CLASS

 CKA_TOKEN

 CKA_PRIVATE

 CKA_LABEL

 CKA_MODIFIABLE

 CKA_APPLICATION

 CKA_OBJECT_ID

 CKA_VALUE

A data object is able to store values for all of these attributes but it does not neccessariliy have
to set data for each of these. The next sub chapter gives us an overview which attributes are
mandatory for all objects and guarantees distinguishablity. Afterwards we learn which attrib-
utes are mandatory for our three base objects. Having learned all necessary basics we are then
able to talk about object templates for different key implementations such as RSA or EC.

cgMiddleware

Version 1.0 05/31/2016 Seite 40 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

3.1.4 Golbal mandatory attributes

An object, equal being a token-, a session-, or a data object (and so on..), always needs the
global mandatory attributes being present. Not containing these attributes will result in errors
– so without them no object can be written to or read from the token14. The mandatory attrib-
utes are:

 CKA_CLASS

This attributes describes whether the object is a

o Data object -> CKO_DATA

o Certificate object -> CKO_CERTIFICATE

o Public key object -> CKO_PUBLIC_KEY

o Private key object -> CKO_PRIVATE_KEY

o Secret key object -> CKO_SECRET_KEY

There are also objects like CKO_HW_FEATURE, CKO_DOMAIN_PARAMETERS,
CKO_MECHANISM, CKO_OTP_KEY and CKO_VENDOR_DEFINED but these are out of
scope for this documentation.

 CKA_TOKEN

14 this also applies for session objects

Figure 3: class hirarchy

cgMiddleware

Version 1.0 05/31/2016 Seite 41 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

This attributes decides whether the object will be stored on the token or is a session
object.

 CKA_PRIVATE

This attribute decides whether a public session can read this object or the user must be
logged in15.

 CKA_MODIFIABLE

This attribute decides whether the object can be changed after it was created.

Not all attributes can be changed. Currently we only support changing the attributes men-
tionend in 3.3.3.

The values set to the mandatory attributes influence the associated object for its complete
lifetime.

3.1.5 Object specific attributes

We previously learned that the CKA_CLASS attribute is responsible for determining the objects
kind. Having this information leads us to being more specific in enclosing the objects implemen-
tation type. Lets have a look back to Figure 3. Each of the data-, key- and certificate object con-
tains one more attribute giving better information about what the object really is all about:

 Key contains CKA_KEY_TYPE

 Certificate contains CKA_CERTIFICATE_TYPE

 Data contains CKA_OBJECT_ID

These three attributes have one thing in common. They all give information about the imple-
mentation type of the object and which attributes it may include. Currently we support the fol-
lowing types:

 CKK_RSA and CKK_EC for CKA_KEY_TYPE

In conjunction with the CKA_CLASS attribute this leads to the following implementation
types:

o RSA public key (CKA_CLASS -> CKO_PUBLIC_KEY)

o RSA private key (CKA_CLASS -> CKO_PRIVATE_KEY)

o EC public key (CKA_CLASS -> CKO_PUBLIC_KEY)

o EC private key (CKA_CLASS -> CKO_PRIVATE_KEY)

 CKC_X_509 for CKA_CERTIFICATE_TYPE

 and any user specific OID for CKA_OBJECT_ID

15 objects which should kept secret (like private- or secret keys) will internally overwritte this flag to private even

when someone tries to create them as a public

cgMiddleware

Version 1.0 05/31/2016 Seite 42 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

Each of the implementation types is also defined in cryptoki. In 3.2 we list all additional attrib-
utes16 supported by that implementation type and give information about the ones which are
mandatory (object specific attributes) and those which are optional. Since cryptoki defines all
possible implementation types we only handle the ones which are affected by our implementa-
tion.

3.2 Object templates

Regarding the implementation type each object has additionally attributes. Those attributes
are defined here where the fat ones are mandatory while the others are optional. We first start
with the base types before we handle the specific implementation types.

Each object inherits the base classe’s attributes thus it also includes that attributes. Inherited
attributes are no more listed and can be extracted from Figure 3.

3.2.1 Data base type

 CKA_APPLICATION

 CKA_OBJECT_ID

 CKA_VALUE

3.2.2 Key base type

 CKA_KEY_TYPE

 CKA_ID

 CKA_START_DATE (not yet supported for token objects)

 CKA_END_DATE (not yet supported for token objects)

 CKA_DERIVE

 CKA_LOCAL

 CKA_KEY_GEN_MECHANISM (not yet supported for token objects)

 CKA_ALLOWED_MECHANISMS (not yet supported for token objects)

3.2.3 Public key base type

 CKA_SUBJECT (not yet supported for token objects)

 CKA_ENCRYPT

 CKA_VERIFY

 CKA_VERIFY_RECOVER (not yet supported for token objects)

16 the ones which are inherited are no more listed

cgMiddleware

Version 1.0 05/31/2016 Seite 43 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

 CKA_WRAP

 CKA_TRUSTED (not yet supported for token objects)

 CKA_WRAP_TEMPLATE (not yet supported for token objects)

3.2.4 Private key base type

 CKA_SUBJECT (not yet supported for token objects)

 CKA_SENSITIVE

 CKA_DECRYPT

 CKA_SIGN

 CKA_SIGN_RECOVER (not yet supported for token objects)

 CKA_UNWRAP

 CKA_EXTRACTABLE (not yet supported for token objects)

 CKA_ALWAYS_SENSITIVE (not yet supported for token objects)

 CKA_NEVER_EXTRACTABLE (not yet supported for token objects)

 CKA_WRAP_WITH_TRUSTED (not yet supported for token objects)

 CKA_UNWRAP_TEMPLATE (not yet supported for token objects)

 CKA_ALWAYS_AUTHENTICATE (not yet supported for token objects)

3.2.5 Secret key base type (not yet supported for token objects)

 CKA_SENSITIVE

 CKA_ENCRYPT

 CKA_DECRYPT

 CKA_SIGN

 CKA_VERIFY

 CKA_WRAP

 CKA_UNWRAP

 CKA_EXTRACTABLE

 CKA_ALWAYS_SENSITIVE

 CKA_NEVER_EXTRACTABLE

 CKA_CHECK_VALUE

 CKA_WRAP_WITH_TRUSTED

 CKA_TRUSTED

 CKA_UNWRAP_TEMPLATE

cgMiddleware

Version 1.0 05/31/2016 Seite 44 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

3.2.6 Certificate base type

 CKA_CERTIFICATE_TYPE

 CKA_TRUSTED (not yet supported for token objects)

 CKA_CERTIFICATE_CATEGORY (not yet supported for token objects)

 CKA_CHECK_VALUE (not yet supported for token objects)

 CKA_START_DATE (not yet supported for token objects)

 CKA_END_DATE (not yet supported for token objects)

3.2.7 RSA

Public key

 CKA_MODULUS

 CKA_MODULUS_BITS

 CKA_PUBLIC_EXPONENT

 CKA_VALUE (automatically calculated as ASN1 structure from modulus and exponent)

Private key

 CKA_MODULUS (automatically calculated from prime 1 and 2)

 CKA_MODULUS_BITS (only mandatory for key generation)

 CKA_PUBLIC_EXPONENT

 CKA_PRIVATE_EXPONENT (automatically calculated from public exponent)

 CKA_PRIME_1

 CKA_PRIME_2

 CKA_EXPONENT_1 (automatically calculated from prime 1)

 CKA_EXPONENT_2 (automatically calculated from prime 2)

 CKA_COEFFICIENT (automatically calculated from prime 1 and 2)

3.2.8 EC

Public key

 CKA_EC_PARAMS

 CKA_EC_POINT (as BER-encoded uncompressed key)

 CKA_VALUE (automatically calculated as ASN1 structure from ec-params and ec-point)

cgMiddleware

Version 1.0 05/31/2016 Seite 45 von 45

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

Private key

 CKA_VALUE

 CKA_EC_PARAMS

 CKA_EC_POINT (automatically calculated as BER-encoded uncompressed key)

3.2.9 X509 Certificate

 CKA_SUBJECT (not yet supported for token objects)

 CKA_ID

 CKA_ISSUER (not yet supported for token objects)

 CKA_SERIAL_NUMBER (not yet supported for token objects)

 CKA_VALUE (ASN1 encoded certificate)

 CKA_URL (not yet supported for token objects)

 CKA_HASH_OF_SUBJECT_PUBLIC_KEY (not yet supported for token objects)

 CKA_HASH_OF_ISSUER_PUBLIC_KEY (not yet supported for token objects)

 CKA_JAVA_MIDP_SECURITY_DOMAIN (not yet supported for token objects)

3.3 Function specific templates

In this section we handle object templates used for different use cases - these are:

 Create / import an object

 Generate a keypair

 Change attributes

We will learn how the attributes shall be used in order to support our cryptoki implementation
since in most of the writing-cases (create, change, generate) there are always some token (for
us applet-) dependant attributes which are mandatory even when the specification says they
are not or attributes which can’t be modified or are unsupported.

cgMiddleware

Version 1.0 05/31/2016 Seite 1 von 2

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

3.3.1 Create / import an object

RSA

Table 3 describes the mandatory attributes for importing a RSA private key (token object) and a RSA public key (session object).

Since the applet generates the public key itself (for token objects) this object should not be created. Just import the private key and use the
object-search (use the private keys CKA_ID) afterwards to find the corresponding public key. An example is given in 5.

RSA private key (token object)

During the import a label can be also given. If not CKA_LABEL receives the same value as CKA_ID.

The values for CKA_MODULUS, CKA_PRIVATE_EXPONENT, CKA_EXPONENT_1, CKA_EXPONENT_2 and CKA_COEFFICIENT can be also
given. If not17 they are calculated in software from CKA_PRIME_1, CKA_PRIME_2 and CKA_PUBLIC_EXPONENT.

Do not use CKA_MODULUS_BITS as attribute when creating / importing a RSA keypair. This attribute is reserved and is used for de-
tecting keypair generation! The attribute will be automatically set during import.

We do not support the creation / import of a private key session object since we only allow public key operations in software.

17 when one of the previous attributes is missing all these attributes are calculated

cgMiddleware

Version 1.0 05/31/2016 Seite 2 von 2

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

Since we only support public key operations in software a RSA private key can not be created as session object. Private key operations shall
always be done in hardware – therefore import the private key as token object. RSA public keys can be created as session objects in order
to encrypt18 data for a receiver or to verify18 a signature. An example is given in 5.

RSA public key (session object)

During the import a label can be also given. If not CKA_LABEL receives the same value as CKA_ID.

During the import CKA_MODULUS_BITS can be also given. If not it is calculated from CKA_MODULUS.

Key Type CKA_CLASS
CKA_TOKE

N
CKA_PRIVAT

E
CKA_MODIFIABL

E
CKA_KEY_TYP

E
CKA_ID

CKA_PRIME_
1

CKA_PRIME_
2

CKA_PUBLIC_EXPO
NENT

Private key
(token
object)

CKO_PRIVATE_KEY CK_TRUE CK_TRUE
CK_TRUE or
CK_FALSE

CKK_RSA
All UTF8
symbols

CK_BYTE[] CK_BYTE[]

CK_BYTE[]

(recommended is
0x010001)

Key Type CKA_CLASS
CKA_TOKE

N
CKA_PRIVAT

E
CKA_MODIFIABL

E
CKA_KEY_TYP

E
CKA_ID

CKA_MODUL
US

CKA_PUBLIC_
EXPONENT

-

Public key
(session
object)

CKO_PUBLIC_KEY CK_FALSE CK_FALSE
CK_TRUE or
CK_FALSE

CKK_RSA
All UTF8
symbols

CK_BYTE[] CK_BYTE[] -

18 according to the relevant access flags

Table 3: RSA key import

cgMiddleware

Version 1.0 05/31/2016 Seite 1 von 3

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

EC

Table 5 describes the mandatory attributes for importing a EC private key (token object) and a EC public key (session object).

Table 4 lists the OIDs of the supported elliptic curves – use the desired OID as CK_EC_PARAMS.

Since the applet generates the public key itself (for token objects) this object should not be created. Just import the private key and use the
object-search (use the private keys CKA_ID) afterwards to find the corresponding public key. An example is given in 5.

During the import a label can be also given. If not CKA_LABEL receives the same value as CKA_ID.

The value CKA_EC_POINT19 can be also given. If not it is calculated in software from CKA_VALUE.

We do not support the import of a private key session object since we only allow public key operations in software.

19 In uncompressed format => starting with 0x04 indicating this is the uncompressed format followed by concatenating the x and then the y coordinate of the point

cgMiddleware

Version 1.0 05/31/2016 Seite 2 von 3

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

Use one of the following OID values as CK_BYTE[] as value for CKA_EC_PARAMS attribute.

Defined elliptic curve OID

brainpoolP160r1 0x06, 0x09, 0x2B, 0x24, 0x03, 0x03, 0x02, 0x08, 0x01, 0x01, 0x01

brainpoolP192r1 0x06, 0x09, 0x2B, 0x24, 0x03, 0x03, 0x02, 0x08, 0x01, 0x01, 0x03

brainpoolP224r1 0x06, 0x09, 0x2B, 0x24, 0x03, 0x03, 0x02, 0x08, 0x01, 0x01, 0x05

brainpoolP256r1 0x06, 0x09, 0x2B, 0x24, 0x03, 0x03, 0x02, 0x08, 0x01, 0x01, 0x07

brainpoolP320r1 0x06, 0x09, 0x2B, 0x24, 0x03, 0x03, 0x02, 0x08, 0x01, 0x01, 0x09

ansi-x962 prime192v1 0x06, 0x08, 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x03, 0x01, 0x01

ansip224r1 0x06, 0x05, 0x2B, 0x81, 0x04, 0x00, 0x21

ansi-x962 prime256v1 0x06, 0x08, 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x03, 0x01, 0x07

Table 4: supported EC OIDs

cgMiddleware

Version 1.0 05/31/2016 Seite 3 von 3

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

Since we only support public key operations in software an EC private key can not be created as session object. Private key operations shall
always be done in hardware – therefore import the private key as token object. EC public keys can be created as session objects in order to
verify18 a signature. An example is given in 5.

EC public key (session object)

During the import a label can be also given. If not CKA_LABEL receives the same value as CKA_ID.

Key Type CKA_CLASS
CKA_TOKE

N
CKA_PRIVAT

E
CKA_MODIFIABL

E
CKA_KEY_TYP

E
CKA_ID

CKA_EC_PAR
AMS

CKA_VALUE

Private key CKO_PRIVATE_KEY CK_TRUE CK_TRUE
CK_TRUE or
CK_FALSE

CKK_EC
All UTF8
symbols

CK_BYTE[] CK_BYTE[]

Key Type CKA_CLASS
CKA_TOKE

N
CKA_PRIVAT

E
CKA_MODIFIABL

E
CKA_KEY_TYP

E
CKA_ID

CKA_EC_PAR
AMS

CK_EC_POINT

Public key CKO_PUBLIC_KEY CK_FALSE CK_ FALSE
CK_TRUE or
CK_FALSE

CKK_EC
All UTF8
symbols

CK_BYTE[] CK_BYTE[]

Table 5: EC key import

cgMiddleware

Version 1.0 05/31/2016 Seite 1 von 2

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

3.3.2 Generate a keypair

Table 6 shows the attributes necessary to generate a keypair. We only support this feature for
token objects.

When calling the function C_GenerateKeyPair(…) the same template (the same pointer can be
used) for pPublicKeyTemplate and pPublicKeyTemplate shall be used.

We do not support the generation of keypairs for session objects.

Keypair type CKA_CLASS CKA_TOKEN CKA_PRIVATE CKA_KEY_TYPE CKA_MODULUS_BITS

RSA KeyPair

(CKM_RSA_PKCS_K
EY_PAIR_GEN)

CKO_PRIVA
TE_KEY

CK_TRUE CK_TRUE CKK_RSA 512 – 2048

Keypair type CKA_CLASS CKA_TOKEN CKA_PRIVATE CKA_KEY_TYPE CKA_EC_PARAMS

EC KeyPair

(CKM_ECDSA_KEY_
PAIR_GEN)

CKO_PRIVA
TE_KEY

CK_TRUE CK_TRUE CKK_EC
use one OID from

Table 4

3.3.3 Change attributes

Currently we do only support to change CKA_ID.

Table 6: generate a keypair

cgMiddleware

Version 1.0 05/31/2016 Seite 2 von 2

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

4 Differences to standard cryptoki specification

Cryptoki is defined very strictly while some parts are quite vague since tokens may vary in their
behavior. In order to support our applet we had to violate some of these definitions. This chap-
ter shows all the differences compared with the original specification.

4.1 KeyGeneration

 Use the same template for pPublicKeyTemplate and pPrivateKeyTemplate

 For EC keypair generation we limit CKA_EC_PARAMS for OID only usage. Supported
OIDs can be found in Table 4

4.2 Import

 When importing RSA keypairs do not use CKA_MODULUS_BITS attribute since this is in-
ternally used for detecting keypair generation

 When importing RSA keypairs do not import the public key since this object is automat-
ically generated on private key import. Just import the private key and use the object
search afterwards to find the corresponding public key. Use the CKA_ID to find it since
it will have the same CKA_ID attribute as the private key.

 For EC keypair import we limit CKA_EC_PARAMS for OID only usage. Supported OIDs
can be found in Table 4

 When importing EC keypairs do not import the public key since this object is automati-
cally generated on private key import. Just import the private key and use the object
search afterwards to find the corresponding public key. Use the CKA_ID to find it since
it will have the same CKA_ID attribute as the private key.

cgMiddleware

Version 1.0 05/31/2016 Seite 1 von 7

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

5 Examples

5.1 Import private key and search associated public key

CK_BYTE p[] = { 0xd8, 0x62, 0x45, 0x54, 0x66, 0x02, 0xea, 0x8f, 0xde, 0x9f, 0xff, 0xe1, 0xc4, 0x34, 0xf7, 0x83, 0x1e,
0xd7, 0x9d, 0x2e, 0xf7, 0x66, 0xc6, 0xfd, 0x6e, 0x81, 0xf7, 0xa5, 0x05, 0xed, 0x4d, 0xc6, 0x06, 0xaa, 0x2e, 0xf3, 0x37,
0x78, 0x07, 0x03, 0x46, 0x5a, 0x51, 0xa2, 0x4d, 0x9f, 0xd2, 0x3a, 0x11, 0xff, 0x89, 0x4f, 0x21, 0xff, 0x3d, 0xa8, 0xa7,
0x0a, 0xe8, 0x3a, 0x2e, 0xcd, 0xfa, 0x75, 0xdd, 0x11, 0x3a, 0xf6, 0x29, 0x49, 0x54, 0xd8, 0x06, 0xc9, 0xa0, 0xb1, 0x47,
0x23, 0x5e, 0xc3, 0x52, 0x19, 0xae, 0x72, 0x54, 0x66, 0x71, 0xd9, 0xff, 0x9a, 0x4a, 0x13, 0x6e, 0x44, 0xb7, 0x42, 0x9f,
0x1a, 0xe4, 0xf2, 0xce, 0xe1, 0x94, 0x57, 0x27, 0x3d, 0x9d, 0xd5, 0x19, 0x73, 0xfe, 0x9b, 0x29, 0x50, 0x21, 0xc1, 0xea,
0x8e, 0x71, 0xbe, 0x5f, 0xff, 0xe5, 0x3a, 0xd5, 0xc4, 0x8e, 0x3b };

CK_BYTE q[] = { 0xdd, 0x81, 0x04, 0xb3, 0xd9, 0x47, 0x28, 0xa4, 0xeb, 0x95, 0x70, 0x14, 0x18, 0xa4, 0x11, 0x07, 0xe9,
0xec, 0x10, 0x44, 0xd5, 0x63, 0xa9, 0x52, 0xc9, 0x39, 0x49, 0x43, 0xd8, 0x05, 0xaf, 0xa2, 0x60, 0xcc, 0xe3, 0x49, 0xb4,
0x52, 0x38, 0xd4, 0x71, 0xc1, 0x5b, 0x75, 0x60, 0x46, 0xe1, 0xff, 0x46, 0xce, 0x5c, 0xdf, 0x97, 0xe1, 0x00, 0x89, 0x05,
0x16, 0x80, 0x3d, 0x15, 0x7e, 0x03, 0xbf, 0x09, 0xb6, 0x9e, 0x7e, 0x38, 0x55, 0xed, 0x47, 0x58, 0x9d, 0xc9, 0x72, 0x39,
0xe6, 0x50, 0xc4, 0x93, 0xe5, 0x36, 0x41, 0x81, 0x3e, 0xef, 0xdd, 0x29, 0xab, 0xc5, 0xdd, 0x25, 0x77, 0x85, 0x3c, 0x25,
0xb4, 0x94, 0xfe, 0x4c, 0x0d, 0x43, 0xef, 0x29, 0x61, 0x99, 0xbe, 0xa5, 0x71, 0x65, 0xdd, 0x1f, 0xde, 0xa9, 0x87, 0x6c,
0x85, 0x26, 0x42, 0x7b, 0x49, 0x68, 0xdc, 0x16, 0x5b, 0xa6, 0xeb };

CK_BYTE publicExponent[] = { 0x01, 0x00, 0x01 };

 CK_OBJECT_HANDLE publicKeyObjectHandle = 0;
 CK_OBJECT_HANDLE privateKeyObjectHandle = 0;

 CK_ATTRIBUTE aClass, aKeyType, aID, aToken, aPrivate;
 CK_OBJECT_CLASS classType = CKO_PRIVATE_KEY;
 CK_KEY_TYPE keyType = CKK_RSA;
 CK_BYTE ID[16];

 fillRandomID(ID, 16);

 CK_BBOOL trueValue = CK_TRUE;

 aClass.type = CKA_CLASS;
 aKeyType.type = CKA_KEY_TYPE;
 aID.type = CKA_ID;
 aToken.type = CKA_TOKEN;
 aPrivate.type = CKA_PRIVATE;

cgMiddleware

Version 1.0 05/31/2016 Seite 2 von 7

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

 aClass.pValue = &classType;
 aKeyType.pValue = &keyType;
 aID.pValue = ID;
 aToken.pValue = &trueValue;
 aPrivate.pValue = &trueValue;

 aClass.ulValueLen = sizeof(classType);
 aKeyType.ulValueLen = sizeof(keyType);
 aID.ulValueLen = sizeof(ID);
 aToken.ulValueLen = sizeof(trueValue);
 aPrivate.ulValueLen = sizeof(trueValue);

 CK_ATTRIBUTE aPrimeP, aPrimeQ, aPublicExponent;

 aPrimeP.type = CKA_PRIME_1;
 aPrimeQ.type = CKA_PRIME_2;
 aPublicExponent.type = CKA_PUBLIC_EXPONENT;

 aPrimeP.pValue = p.data();
 aPrimeQ.pValue = q.data();
 aPublicExponent.pValue = publicExponent.data();

 aPrimeP.ulValueLen = p.size();
 aPrimeQ.ulValueLen = q.size();
 aPublicExponent.ulValueLen = publicExponent.size();

CK_ATTRIBUTE attributes[] = {aClass, aKeyType, aID, aToken, aPrivate, aPrimeP, aPrimeQ, aPublicExponent};

pList->C_CreateObject(session, attributes, sizeof(attributes) / sizeof(CK_ATTRIBUTE), &privateKeyObjectHandle);

 //find corresponding public key
 CK_OBJECT_CLASS anotherClassType = CKO_PUBLIC_KEY;
 aClass.pValue = &anotherClassType;

 CK_ATTRIBUTE publicKeyAttributes[] = {aClass, aID};
 CK_ULONG count = 1;

pList->C_FindObjectsInit(session, publicKeyAttributes, sizeof(publicKeyAttributes) / sizeof(CK_ATTRIBUTE));

cgMiddleware

Version 1.0 05/31/2016 Seite 3 von 7

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

 pList->C_FindObjects(session, &publicKeyObjectHandle, 1, &count);
 pList->C_FindObjectsFinal(session);

cgMiddleware

Version 1.0 05/31/2016 Seite 4 von 7

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

5.1.1 Create RSA public key session object to verify some signature

CK_OBJECT_HANDLE publicKeyHandle;

CK_BYTE data[] = {'h', 'a', 'l', 'l', 'o'};

CK_BYTE signature[] = {0x8E, 0x99, 0xE3, 0x0D, 0xB4, 0xA6, 0x44, 0x0D, 0x91, 0x9D, 0x64, 0x07, 0xB4, 0xED, 0x07, 0x4F,
0x83, 0x80, 0xA8, 0x41, 0x9E, 0xB0, 0xB4, 0xE3, 0x74, 0x77, 0x48, 0xD7, 0x2F, 0xE4, 0xAC, 0x74, 0xF4, 0xD5, 0xE2, 0x3A,
0xAB, 0xB7, 0xD4, 0xC7, 0xE8, 0xD9, 0x54, 0xD6, 0x61, 0xB9, 0xC9, 0x01, 0xBF, 0xA6, 0x02, 0x98, 0x33, 0xDC, 0xA0, 0x9B,
0x4E, 0xBF, 0xFF, 0xB8, 0x07, 0x02, 0x35, 0x72};

CK_BYTE modulus[] = {0x99, 0x69, 0x9D, 0x45, 0x39, 0xDB, 0x53, 0x68, 0xC4, 0x6D, 0xEB, 0x6E, 0x4C, 0x25, 0xEC, 0x5B,
0x84, 0xBE, 0x17, 0xC8, 0x85, 0xF5, 0x63, 0x03, 0x2E, 0x3A, 0xFE, 0x59, 0x92, 0x9A, 0x29, 0x3C, 0xD0, 0x4F, 0x7B, 0x57,
0xB7, 0x11, 0x9D, 0x5E, 0xE6, 0x86, 0x5B, 0x03, 0xA0, 0xD9, 0xA9, 0xEA, 0x2E, 0xB9, 0x15, 0xA7, 0xBF, 0x80, 0xA6, 0x69,
0x6E, 0x23, 0x5A, 0x01, 0xDE, 0xCE, 0xED, 0x5D};

 CK_BYTE public_exponent[] = {0x01, 0x00, 0x01};

 CK_ATTRIBUTE aClass, aKeyType, aID, aToken, aPrivate;
 CK_OBJECT_CLASS classType = CKO_PUBLIC_KEY;
 CK_KEY_TYPE keyType = CKK_RSA;
 CK_BYTE ID[] = {'t', 'e', 's', 't', '_', 'R', 'S', 'A', '_', '5', '1', '2'};
 CK_BBOOL trueValue = CK_TRUE;
 CK_BBOOL falseValue = CK_FALSE;

 aClass.type = CKA_CLASS;
 aKeyType.type = CKA_KEY_TYPE;
 aID.type = CKA_ID;
 aToken.type = CKA_TOKEN;
 aPrivate.type = CKA_PRIVATE;

 aClass.pValue = &classType;
 aKeyType.pValue = &keyType;
 aID.pValue = ID;
 aToken.pValue = &falseValue;
 aPrivate.pValue = &falseValue;

 aClass.ulValueLen = sizeof(classType);
 aKeyType.ulValueLen = sizeof(keyType);

cgMiddleware

Version 1.0 05/31/2016 Seite 5 von 7

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

 aID.ulValueLen = sizeof(ID);
 aToken.ulValueLen = sizeof(falseValue);
 aPrivate.ulValueLen = sizeof(falseValue);

 CK_ATTRIBUTE aModulus, aPublicExponent;

 aModulus.type = CKA_MODULUS;
 aPublicExponent.type = CKA_PUBLIC_EXPONENT;

 aModulus.pValue = modulus;
 aPublicExponent.pValue = public_exponent;

 aModulus.ulValueLen = sizeof(modulus);
 aPublicExponent.ulValueLen = sizeof(public_exponent);

 CK_ATTRIBUTE attributes[] = {aClass, aKeyType, aID, aToken, aPrivate, aModulus, aPublicExponent};
 pList->C_CreateObject(sessionID, attributes, sizeof(attributes) / sizeof(CK_ATTRIBUTE), &publicKeyHandle);

 CK_MECHANISM mechanism;
 mechanism.mechanism = CKM_SHA1_RSA_PKCS;

 pList->C_VerifyInit(sessionID, &mechanism, publicKeyHandle);
 pList->C_Verify(sessionID, data, sizeof(data), signature, sizeof(signature));

cgMiddleware

Version 1.0 05/31/2016 Seite 6 von 7

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

5.1.2 Generate EC keypair

 CK_OBJECT_HANDLE publicKeyHandle, privateKeyHandle;
 CK_MECHANISM mech;
 mech.mechanism = CKM_ECDSA_KEY_PAIR_GEN;

 CK_ATTRIBUTE aClass, aToken, aPrivate, aKeyType, aECParams;

 CK_OBJECT_CLASS classType = CKO_PRIVATE_KEY;
 CK_BBOOL falseValue = CK_FALSE;
 CK_BBOOL trueValue = CK_TRUE;
 CK_KEY_TYPE keyType = CKK_EC;

 aClass.type = CKA_CLASS;
 aClass.pValue = &classType;
 aClass.ulValueLen = sizeof(classType);

 aToken.type = CKA_TOKEN;
 aToken.pValue = &trueValue;
 aToken.ulValueLen = sizeof(trueValue);

 aPrivate.type = CKA_PRIVATE;
 aPrivate.pValue = &trueValue;
 aPrivate.ulValueLen = sizeof(trueValue);

 aKeyType.type = CKA_KEY_TYPE;
 aKeyType.pValue = &keyType;
 aKeyType.ulValueLen = sizeof(keyType);

 aECParams.type = CKA_EC_PARAMS;
 aECParams.pValue = oid;
 aECParams.ulValueLen = oidSize;

 CK_ATTRIBUTE attributes[] = {aClass, aToken, aPrivate, aKeyType, aECParams};

pList->C_GenerateKeyPair(session, &mech, attributes, sizeof(attributes) / sizeof(CK_ATTRIBUTE), attributes, sizeof(
attributes) / sizeof(CK_ATTRIBUTE), &publicKeyHandle, &privateKeyHandle);

cgMiddleware

Version 1.0 05/31/2016 Seite 7 von 7

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

5.1.3 Change attribute

 //… privateKey & publicKey have been created / generated previously -> we change their IDs and Label

 CK_ATTRIBUTE aID, aLabel;
 char test[] = "Test";

 char ID[4];
 char LABEL[4];

 aID.type = CKA_ID;
 aID.pValue = test;
 aID.ulValueLen = 4;

 aLabel.type = CKA_LABEL;
 aLabel.pValue = test;
 aLabel.ulValueLen = 4;

 CK_ATTRIBUTE attributes[] = {aID, aLabel};

 pFunctionList->C_SetAttributeValue(session, privateKey, attributes, sizeof(attributes) / sizeof(CK_ATTRIBUTE));

 pFunctionList->C_SetAttributeValue(session, publicKey, attributes, sizeof(attributes) / sizeof(CK_ATTRIBUTE));

cgMiddleware

Version 1.0 05/31/2016 Seite 1 von 1

© certgate 2016 - All rights reserved.
No part of this documentation may be used for any purposes other than personal use, or processed, duplicated
or distributed using electronic systems, in any form such as print, photocopy or any other procedure without a
prior written approval from certgate GmbH.

6 References

[CRTK04] RSA Laboratories, 2004, PKCS #11 v2.20: Cryptographic Token Interface
Standard

